Arduino Projects    |   Raspberry Pi  |     Electronic Circuits   |   Electronics Reference Design Library  |   AVR    |    PIC    |    8051    |    Electronic Projects

How to interface Stepper Motor with 8051 Microcontroller (AT89C51)

Summary

Developed By: 
Himanshu Choudhary
 
Stepper motor is one of the commonly used motors for precise angular movement. The advantage of using a stepper motor is that the angular position of the motor shaft can be controlled without any feedback mechanism. Stepper motors are widely used in industrial and commercial applications. They are also commonly used as in drive systems of autonomous robots.
 
This article explains the unipolar stepper motor interfacing with AT89C51 microcontroller. The microcontroller is programmed to rotate the stepper in wave drive and half drive stepping modes. For basic concepts and working of a stepper motor, refer the article on Stepper Motors.

 

Interfacing Stepper Motor with 8051 Microcontroller : Project

Description

A Unipolar Stepper Motor is rotated by energizing the stator coils in a sequence. In unipolar stepper, the direction of current in stator coils is not required to be controlled by the driving circuit. Just applying the voltage signals across the motor coils or motor leads in a sequence is sufficient to drive the motor.
 
A two phase unipolar stepper motor has a total of six wires/leads of which four are end wires (connected to coils) and two are common wires. The color of common wires in the stepper motor used here is Green. Each common wire is connected to two end leads thus forming two phases. The end leads corresponding to each phase have to be identified.
 
Unipolar Stepper Motor Wires and Phases
 
In some cases, when the leads cannot be directly identified in the motor, the identification of endpoints and common points can be done by measuring the resistance between the leads. The leads of different phase will show open circuited condition with respect to each other. This way the leads corresponding to different phase can be separated. The resistance between any two end points of same phase will be twice the resistance between a common point and an end point. This way the common and end points of both the phases can be identified.
 
Unipolar Stepper Motor Configuration  
To work with the unipolar stepper motor, the common points are connected to either Ground or Vcc and the end points of both the phases are usually connected through the port pins of a microcontroller. In present case the common (Green) wires are connected to Vcc. The end points receive the control signals as per the controller's output in a particular sequence to drive the motor.
 
Since the coils related to each phase are arranged in alternate manner, the end points of two phases are energized in alternate fashion to rotate the motor. This means that the voltage signal should be applied to first end point of Phase1 and then to the first end point of the Phase2 and so on.
 
1. Wave Drive Stepping Mode
The above mentioned sequence is repeated to rotate the motor in Wave Drive Stepping Mode. (For more details on different Stepping Modes, refer to the article on Stepper Motors) The direction of rotation can be clockwise or anti clockwise depending upon the selection of end points.
 
Signal sequence for Wave Drive Stepping Mode
Step
Yellow lead
(End point 1 of Phase1)
Blue lead
(End point 2 of Phase1)
Red lead
(End point 1 of Phase2)
White lead
(End point 2 of Phase2)
1
1
0
0
0
2
0
0
1
0
3
0
1
0
0
4
0
0
0
1
 

Stepper Motor Wave Drive

 

2. Full Drive Stepping Mode

The Full Drive Stepping can be achieved by energizing two endpoints of different phases simultaneously. 

Signal sequence for Full Drive Stepping Mode
Step
Yellow lead
(End point 1 of Phase1)
Blue lead
(End point 2 of Phase1)
Red lead
(End point 1 of Phase2)
White lead
(End point 2 of Phase2)
1
1
0
1
0
2
0
1
1
0
3
0
1
0
1
4
1
0
0
1
 
Stepper Motor Full Drive
 
3. Half Drive Stepping Mode
The Half Drive Stepping is achieved by combining the steps of Wave and Full Drive Stepping Modes. This divides the stepping angle by half.
 
Signal sequence for Half Drive Stepping Mode
Step
Yellow lead
(End point 1 of Phase1)
Blue lead
(End point 2 of Phase1)
Red lead
(End point 1 of Phase2)
White lead
(End point 2 of Phase2)
1
1
0
0
0
2
1
0
1
0
3
0
0
1
0
4
0
1
1
0
5
0
1
0
0
6
0
1
0
1
7
0
0
0
1
8
1
0
0
1
 
Stepper Motor Half Drive
 
Note:
The stepping angle depends upon the resolution of the stepper motor. The direction of rotation and size of steps is directly related to the order and number of input sequence.  The shaft rotation speed depends on the frequency of the input sequence. The torque is proportional to the number of magnets magnetized at a time.
 
Circuit Description:
In the circuit, Port P2 is defined as output port to provide the input sequence for the stepper motor. Four transistors are used as switches to drive the motor. The motor leads are not directly interfaced with the microcontroller pins because stepper motor requires 60mA current while AT89C51 has the maximum current rating of 50mA. So the transistors switches are used to transfer signals from the microcontroller to the stepper wires.
 
The sequence of signals mentioned in the tables above rotates the motor in clockwise direction. Reversing these input sequences would rotate the motor in counter clockwise direction.
The four transistors used in this circuit could be replaced altogether by ULN2003 as has been explained in the next article.

Circuit Diagram

Video

Code

This Code is only visible to Registered users. Please Login/Register

 

Components

BC547 | Transistor BC547  | PDF Datasheet
Transistor BC547
BC547 is an NPN bi-polar junction transistor. A transistor, stands for transfer of resistance, is commonly used to amplify current. A small current at its base controls a larger current...
AT89C51 Microcontroller, Atmel 89C51 Controller Image
AT89C51 Microcontroller

AT89C51 is an 8-bit microcontroller and belongs to Atmel's 8051 family. ATMEL 89C51 has 4KB of Flash programmable and erasable read only memory (...

Browse 4m+ Electronic Products


 
Pick the right product for your next design project with "Mouser Store". Mouser Electronics brings broadest range of semiconductors and electronic components from over 500 industry leading suppliers. 
 
Mouser specializes in the rapid introduction of new products and technologies for design engineers and buyers that includes semiconductors, interconnects, passives, and electro-mechanical components. Providing the best possible service with the flexibility of not requiring a minimum order and same-day shipping, Mouser has it all.
 
 
 
 
When you need the right part right now, think of Mouser
 
Thank you
Team EG

 

APPLICATIONS & TECHNOLOGIES

Learn about the latest applications and industry trends with tutorials and white paper design resources on vertical markets.

Automotive
Energy Harvesting
MEMS Technology
OpenSource Hardware
RFID & NFC
RF Wireless
Sensor
Solar
Touch
Wireless Charging

 

You are here