Engineers Garage

  • Electronic Projects & Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe

4×4 alphanumeric keypad programming for 8051

By EG Projects May 1, 2019

The first thing you must know how does the keypad works.we initially make our keypad rows and coulombs high 1(Actually making the pins connected to the rows and coulombs high 1). When you press any key of the keypad the corresponding row and coulomb of the keypad becomes grounded.now we simply check the corresponding row and coulomb and identify which key is pressed. Here i am giving a code which checks the corresponding pressed key and then prints the associated character with that key on your lcd(16×2,16×1 etc ). Note  that the letters or numbers that are printed on your keypad are not actually printing on the screen. Keypad doesn’t do any thing on its(Only just it grounds the associated row and coulomb of the key that you pressed on it).Its your code which made the letter printed on your lcd(8×1,8×2).You can also program your micro controller in the way that the keypad first button prints all the alphabets and digits. Oh! its  some thing new to you by it is true. For example on you cell phone each button prints the alphabets and numeric digit as well as all the special characters and symbols on your mobile screen.Now starting the code.I am using 4×4 keypad and the code is made using it and it works you just have to place it in your code and call it from your main function and your alphanumeric keypad is ready to use.
SOME VARIABLES DESCRIPTIONS

  • r0-r1-r2-r3 are rows that are connected to my keypad. co-c1-c3-c4 are coulombs that are connected to my keypad. 4 rows and 4 coulombs thus making a 4×4 keypad having 16 buttons on it.
  • P1 is micro controller port which i am using for rows and coulombs. 
  • cmd(); is function to send commands to the lcd.
  • lcddata(); is function which is sending data to lcd.
  • delay(); is function to include necessary delay();

NOTE: That a character data can only be sent to lcd we can not send any data that is other than character or grater that 8-bits .You can also send ASCII characters.

4×4 Alphanumeric keypad code

                                       //IDENTIFYING KEYSTROKE
void keypad(){
unsigned char c=’t’;
while(c!=’E’){
//a,b,c,1
r0=0;r1=1;r2=1;r3=1;
if(c0==0 && r0==0){
lcddata(‘a’);P1=0xFE;delay(10000);
     if(c0==0 && r0==0){  
     cmd(0x10); lcddata(‘b’);P1=0xFE;delay(10000);
     if(c0==0 && r0==0){
      cmd(0x10); lcddata(‘c’);P1=0xFE;delay(10000);
   if(c0==0 && r0==0){
      cmd(0x10); lcddata(‘1’);P1=0XFE;delay(10000);
                                                  } 

 }                     
 }
  P1=0xFF; 
                }
r0=0;r1=1;r2=1;r3=1;   //d,e,f,2
if(c1==0 && r0==0){
lcddata(‘d’);P1=0xFE;delay(10000);
if(c1==0 && r0==0){
cmd(0x10); lcddata(‘e’);P1=0xFE;delay(10000);
if(c1==0 && r0==0){
cmd(0x10); lcddata(‘f’);P1=0xFE;delay(10000);
if(c1==0 && r0==0){
cmd(0x10); lcddata(‘2’);P1=0xFE;delay(10000);
                                                }
}
} P1=0xFF;                

}
 //g,h,i,3
r0=0;r1=1;r2=1;r3=1;
if(c2==0 && r0==0){
lcddata(‘g’);P1=0xFE;delay(10000);
if(c2==0 && r0==0){
cmd(0x10); lcddata(‘h’);P1=0xFE;delay(10000);
if(c2==0 && r0==0){
cmd(0x10); lcddata(‘i’);P1=0xFE;delay(10000);
if(c2==0 && r0==0){
cmd(0x10); lcddata(‘3’);P1=0xFE;delay(10000);                            }                                 }
} P1=0xFF;
}
                                               //j,k,l,4
r0=0;r1=1;r2=1;r3=1;
if(c3==0 && r0==0){
lcddata(‘j’);P1=0xFE;delay(10000);
if(c3==0 && r0==0){
cmd(0x10); lcddata(‘k’);P1=0xFE;delay(10000);
if(c3==0 && r0==0){
cmd(0x10); lcddata(‘l’);P1=0xFE;delay(10000);
if(c3==0 && r0==0){
cmd(0x10); lcddata(‘4’);P1=0xFE;delay(10000);                                   }      }
} P1=0xFF;
                  }
 //m,n,o,5
r0=1;r1=0;r2=1;r3=1;
if(c0==0 && r1==0){
lcddata(‘m’);P1=0xFD;delay(10000);
if(c0==0 && r1==0){
cmd(0x10); lcddata(‘n’);P1=0xFD;delay(10000);
 if(c0==0 && r1==0){
cmd(0x10); lcddata(‘o’);P1=0xFD;delay(10000);

if(c0==0 && r1==0){
cmd(0x10); lcddata(‘5’);P1=0xFD;delay(10000);        }        }
} P1=0xFF; 

}
                          //p,q,r,6
 r0=1;r1=0;r2=1;r3=1;
if(c1==0 && r1==0){
lcddata(‘m’);P1=0xFD;delay(10000);
if(c1==0 && r1==0){
cmd(0x10); lcddata(‘n’);P1=0xFD;delay(10000);
if(c1==0 && r1==0){
cmd(0x10); lcddata(‘o’);P1=0xFD;delay(10000);
if(c1==0 && r1==0){
cmd(0x10); lcddata(‘5’);P1=0xFD;delay(10000);         }              }
} P1=0xFF;   

}
                                          //s,t,u,7
r0=1;r1=0;r2=1;r3=1;
if(c2==0 && r1==0){
lcddata(‘s’);P1=0xFD;delay(10000);
if(c2==0 && r1==0){
cmd(0x10); lcddata(‘t’);P1=0xFD;delay(10000);
if(c2==0 && r1==0){
cmd(0x10); lcddata(‘u’);P1=0xFD;delay(10000);
if(c2==0 && r1==0){
cmd(0x10); lcddata(‘7’);P1=0xFD;delay(10000);    }      }
} P1=0xFF;   

 }
                                                //v,w,x,8
r0=1;r1=0;r2=1;r3=1;
if(c3==0 && r1==0){
lcddata(‘v’);P1=0xFD;delay(10000);
if(c3==0 && r1==0){
cmd(0x10); lcddata(‘w’);P1=0xFD;delay(10000);
if(c3==0 && r1==0){
cmd(0x10); lcddata(‘x’);P1=0xFD;delay(10000);
if(c3==0 && r1==0){
cmd(0x10); lcddata(‘8’);P1=0xFD;delay(10000);   }      }
}  P1=0xFF;  

}
                                       //y,z,9
r0=1;r1=1;r2=0;r3=1;
if(c0==0 && r2==0){
lcddata(‘y’);P1=0xFB;delay(10000);
if(c0==0 && r2==0){
cmd(0x10); lcddata(‘z’);P1=0xFB;delay(10000);
if(c0==0 && r2==0){
cmd(0x10); lcddata(‘9’);P1=0xFB;delay(10000);  }
}  P1=0xFF;   

}
                                                              //0,-,>
r0=1;r1=1;r2=0;r3=1;
if(c1==0 && r2==0){
lcddata(‘0’);P1=0xFB;delay(10000);
if(c1==0 && r2==0){
cmd(0x10); lcddata(‘-‘);P1=0xFB;delay(10000);
if(c1==0 && r2==0){
cmd(0x10); lcddata(‘>’);P1=0xFB;delay(10000);      }
} P1=0xFF;     

}
                                             //!,@,#
r0=1;r1=1;r2=0;r3=1;
if(c2==0 && r2==0){
lcddata(‘!’);P1=0xFB;delay(10000);
if(c2==0 && r2==0){
cmd(0x10); lcddata(‘@’);P1=0xFB;delay(10000);
if(c2==0 && r2==0){
cmd(0x10); lcddata(‘#’);P1=0xFB;delay(10000);             }
} P1=0xFF;  

}
                                                //$,%,^
r0=1;r1=1;r2=0;r3=1;
if(c3==0 && r2==0){
lcddata(‘$’);P1=0xFB;delay(10000);
if(c3==0 && r2==0){
cmd(0x10); lcddata(‘%’);P1=0xFB;delay(10000);
if(c3==0 && r2==0){
cmd(0x10); lcddata(‘^’);P1=0xFB;delay(10000);      }
}  P1=0xFF; 

}
                        //&,*
r0=1;r1=1;r2=1;r3=0;
if(c0==0 && r3==0){
lcddata(‘&’);P1=0xF7;delay(10000);
if(c0==0 && r3==0){
cmd(0x10); lcddata(‘*’);P1=0xF7;delay(10000);
} P1=0xFF;    

}
                                   //(,)
r0=1;r1=1;r2=1;r3=0;
if(c1==0 && r3==0){
lcddata(‘(‘);P1=0xF7;delay(10000);
if(c1==0 && r3==0){
cmd(0x10); lcddata(‘)’);P1=0xF7;delay(10000);
} P1=0xFF;     

}
                                //-,+
r0=1;r1=1;r2=1;r3=0;
if(c2==0 && r3==0){
lcddata(‘-‘);P1=0xF7;delay(10000);
if(c2==0 && r3==0){
cmd(0x10); lcddata(‘+’);P1=0xF7;delay(10000);
}P1=0xFF;      

}
                      ///,*
r0=1;r1=1;r2=1;r3=0;
if(c3==0 && r3==0){
lcddata(‘/’);P1=0xF7;delay(10000);
if(c3==0 && r3==0){
cmd(0x10); lcddata(‘*’);P1=0xF7;delay(10000);
} P1=0xFF;           }
 c=’E’;
 }
}
Keypad() is the function which i called from the main function.Than the unsigned char c=’t’ is a variable of character data type .I used it here to run my while() loop .The while loop statement is while(c!=’E’) which is true and it jumps  in the while loop statements. 
Now suppose you have pressed any key the statements are identifying the pressed key. How they are identifying them when the key is pressed the corresponding row and coulomb becomes grounded.Now i am grounding the the first row and making all the other high r0=0;r1=1;r2=1;r3=1; and then i am checking if row 0 and coulomb 0 are grounded if(c0==0 && r0==0) if they are grounded I send lcddata(‘a’) character a to lcd and then making P1=0xFE .This P1=0xFE is some thing you must understand this means that i am sending a hexadecimal value to P1 and to my P1 the keypad is connected .
Now if i convert this hexadecimal value to binary it is 11111110 .Actually this eight bit value is going to port P1. since each port have eight pins so this 8-bit value appears across the P1 pins making c0-c1-c2-c3-r1-r2-r3 high 1 and the  r0 low 0 look at the first digit.Then their is delay(10000). This delay is very important now if you press the first key again in this delay time the next condition if(c0==0 && r0==0) is full filled and lcddata(‘b’) executes and again we made c0-c1-c2-c3-r1-r2-r3 high 1 and r0 low 0 .Thus this P1=0xFE is bringing our row and coulombs back in initial condition. For next check if the key is again pressed in required time.same like you are writing message in your cell phone and if you dont press the same key in time specified for it to display next character. Then the first character appears next. Like you pressed ‘a’ it appears and then quickly pressed the same button then ‘b’ appears but if you pressed ‘a’ and then pressed the same key after 20 second then ‘a’ again appear except ‘b’ which you need . The same applies here if you dont press the key in delay(10000) time. the output will not be what you want.The first key is printing a,b,c,1 in dadicated times and after 1 again if you press it it will print ‘a’. After this I am making port 1 P1 P1=0xFF which means P1=11111111 Thus making all rows and coulombs high 1 again . To identify next button pressed.  
AT  The END OF THE FOR LOOP I AM MAKING c=’E’ ,THUS MAKING WHILE CONDITION FALSE SO THE LOOP BREAKS.NOTE I AM CALLING keypad() FUNCTION IN MAIN UNDER FOLLOWING CONDITION.
while(1)
{keypad();}   
SO THAT YOU CAN PRINT AS MANY CHARACTERS AS YOU WANT.IF YOU USE THIS CODE MAKE SURE YOU ARE CALLING THE FUNCTION keypad(). 

Some statements meaning

  • P1=0xFF ->|11111111| -> Making all rows and coulombs high 1.
  • P1=0xFE ->|11111110| -> Making row 1,2,3 and coulomb 0,1,2,3 high and row 0 low.
  • P1=0xFD ->|11111101| -> Making row 0,2,3 and coulomb 0,1,2,3 high and row 1 low.
  • P1=0xFB ->|11111011| -> Making row 0,1,3 and coulomb 0,1,2,3 high and row 2 low.
  • P1=0xF7 ->|11110111| -> Making row 0,1,2 and coulomb 0,1,2,3 high and row 3 low.

You can replace 

  • P1=0xFF with    r0=1;r1=1;r2=1;r3=1;c0=1;c1=1;c2=1;c3=1;
  • P1=0xFE with    r0=0;r1=1;r2=1;r3=1;c0=1;c1=1;c2=1;c3=1;
  • P1=0xFD with    r0=1;r1=0;r2=1;r3=1;c0=1;c1=1;c2=1;c3=1;
  • P1=0xFB with    r0=1;r1=1;r2=0;r3=1;c0=1;c1=1;c2=1;c3=1;
  • P1=0xF7 with    r0=1;r1=1;r2=1;r3=0;c0=1;c1=1;c2=1;c3=1;

Keypad buttons specified characters,digits and arithmetic operates.
Button 1 = prints a-b-c-1
Button 2 = prints d-e-f-2
Button 3 = prints g-h-i-3
Button 4 = prints j-k-l-4
Button 5 = prints m-n-o-5
Button 6 = prints p-q-r-6
Button 7 = prints s-t-u-7
Button 8 = prints v-w-x-8
Button 9 = prints y-z-9
Button 10 = prints 0 , – , >
Button 11 = prints !-@-#
Button 12 = prints $-%-^
Button 13 = prints &-*
Button 14 = prints (-)
Button 15 = prints -,+
Button 16 = prints /-*


Filed Under: Knowledge Share, Microcontroller Projects

 

Next Article

← Previous Article
Next Article →

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“engineers
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


RSS EDABOARD.com Discussions

  • BF999 Input and output impedance
  • Industrial Relay Board Design for Motorcycle Use
  • Sendust vs Ferrite for SMPS
  • On/Off Slide Switch Reassembly Help
  • sim7090g

RSS Electro-Tech-Online.com Discussions

  • I Wanna build a robot
  • Wierd makita battery
  • using a RTC in SF basic
  • Is AI making embedded software developers more productive?
  • ac current limiting

Featured – LoRa/LoRaWan Series

  • What is the LoRaWAN network and how does it work?
  • Understanding LoRa architecture: nodes, gateways, and servers
  • Revolutionizing RF: LoRa applications and advantages
  • How to build a LoRa gateway using Raspberry Pi
  • How LoRa enables long-range communication
  • How communication works between two LoRa end-node devices

Recent Articles

  • STMicroelectronics unveils SoC based on secure MCU
  • Nexperia’s 48 V ESD diodes support higher data rates with ultra-low capacitance design
  • Taoglas releases Patriot antenna with 18 integrated elements covering 600 to 6000 MHz
  • Amphenol RF introduces SMPM to SMPM assemblies on RG-178 cable
  • Infineon launches 3D magnetic sensors with ±50 mT to ±160 mT measurement ranges

EE ENGINEERING TRAINING DAYS

engineering

Submit a Guest Post

submit a guest post
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • Battery Power Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • Subscribe to our newsletter
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search Engineers Garage

  • Electronic Projects & Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe