Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

555 Timer IC Tester

By Ashutosh Bhatt

The NE555 timer IC is 8 pin DIP which performs a number of tasks in electronic circuitry. It is becoming very much popular among hobbyist as there is a huge list of circuits and experiments which can be performed using it. This project helps to test whether a 555 timer IC is properly functional or not.

This IC testing circuit can test any of the 555 timer IC. This is done by testing whether it is oscillating or not. By using this tester it can be immediately tested whether the timer is functional or not. It also tells if it is shorted or oscillating. If both the LEDs are flashing, the timer is in good working condition and if both the LEDs are OFF or on solid then it is defective. It can also be used as a trouble shooter in 555 based circuits. 

In this project the IC is wired in the astable multivibrator mode. When the power is supplied, the LEDs starts flashing which shows IC is in good working condition. Rate of flashing of the ICs can be controlled by increasing or decreasing the value of resistors R1 and R2.

 


 

When the voltage is supplied to pin2 (trigger input), it is less than 1/3 of supply voltage. The output of the lower comparator forces the flip flop to have low logic state which means output stage has reversing action. In other words, we can say that when the output of the flip flop is LOW, the 555 timer’s output goes HIGH.

When the power supply is first connected to astable circuit then initially the timing capacitor C1 is discharged. The voltage at pin2 becomes 0V and the output of timer is driven HIGH. Capacitor C1 starts charging through R1 and R2. C1 is also connected to pin6 which is threshold input of the timer. As the voltage across C1 increases above 2/3 value of the supply voltage the internal flip flop toggles. The pin7 becomes low which makes C1 to start discharge. As soon as the voltage across C1 goes below 1/3 of the supply voltage the internal flip flop resets and pin7 becomes high. Again c1 starts charging and the process goes on. This is possible only if the IC is in good working condition. The flashing of the LEDs depends on the charging and discharging frequencies.

Circuit Diagrams

Circuit-Diagram-555-Timer-IC-Tester

Project Components

  • 555 Timer IC
  • Capacitor
  • LED
  • Resistor


Filed Under: 555 Timers, Electronic Projects
Tagged With: 555 timer circuit, dip, ic
 

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • Introduction to Brain Waves & its Types (Part 1/13)
  • Understanding NeuroSky EEG Chip in Detail (Part 2/13)
  • Performing Experiments with Brainwaves (Part 3/13)
  • Amplification of EEG Signal and Interfacing with Arduino (Part 4/13)
  • Controlling Led brightness using Meditation and attention level (Part 5/13)
  • Control Motor’s Speed using Meditation and Attention Level of Brain (Part 6/13)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What is a loop calibrator? 
  • What are the battery-selection criteria for low-power design?
  • Key factors to optimize power consumption in an embedded device
  • EdgeLock A5000 Secure Authenticator
  • How to interface a DS18B20 temperature sensor with MicroPython’s Onewire driver

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • What was before microcontrollers ?
  • Measure AC current accurateley (100mA to 10A)
  • 74HC595 creating Fake output
  • NEED HELP FOR OP-AMP IN BGR
  • Check undesired substrate mode...

RSS Electro-Tech-Online.com Discussions

  • Control Bare LCD With ATmega328p
  • Need a ducted soldering fan for solder smoke extraction
  • Sla ir li ion
  • Question about ultrasonic mist maker
  • Best way to reduce voltage in higher wattage system?
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering