Engineers Garage

  • Electronic Projects & Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe

Adaptive PCR, a New Powerful Technique to Speed Up Genetic Analysis

By Samidha Verma April 21, 2008

Academics at Vanderbilt University have progressed into a novel method of accomplishing PCR (polymerase chain reaction), or amplifying DNA so there’s adequate of it to execute genetic analysis. The method is called adaptive PCR and it depends on utilizing only left-handed DNA (L-DNA), which is the reflection of normal DNA, to aid regulate and observe PCR.

Adaptive PCR

PCR is presently a delicate process that can be obstructed by inaccurate sample preparation and ecological conditions. Having a method of uninterruptedly monitoring and controlling the procedure can lead to quicker and inexpensive results from genetic analysis and lessen the dimensions of the machines used.

Though molecularly alike to DNA, L-DNA stays out of maximum genetic developments. It can consequently be labelled with fluorescent markers, added to a PCR sample, and chased as replicas of DNA is prepared.

Altering the temperature of a model all through the monotonous PCR process is equally essential and tough to attain. It has to be prepared throughout several steps, together with when the DNA is split into strands and after primers are combined to activate the PCR reaction. Today, scheduling of this procedure is prepared through estimation rather than in reaction to seeing when assured step has actually been finished.

Adaptive PCR instead depends on perceiving modifications in the fluorescence of L-DNA molecules as they experience the similar phases as the DNA in the identical sample. In reply to upsurges and reductions in fluorescence, the researchers recognize when a specific phase has finished and so instantaneously move the procedure to the next one.

Here’s a captioned figure elucidating the adaptive PCR process, conferring to the researchers.

Adaptive PCR

Contrasting the standard PCR, adaptive PCR habitually controls the duplication process by observing it at the molecular level. The response is contained throughout the three stages of the duplication cycle using red and yellow fluorescent labels connected to synthetic left-handed DNA (L-DNA) shown in blue.

The L-DNA is affixed to a sample and mirrors the collaborations of the natural DNA (D-DNA) shown in green: (1) in the denaturation stage (top right), the trial is heated enough to cause the DNA strands to detach. This instigates the red and yellow fluorescent labels on the L-DNA to light up.

(2) In the annealing stage (bottom right), the sample is chilled to produce left-handed PCR primers to fix to the L-DNA. This is sensed by quenching of the red fluorescence.

(3) In the elongation stage (bottom left) the D-DNA strands are imitated by polymerase enzymes. The L-DNAs are not mimicked during this phase but are transitioning to the denaturation stage as designated by brightening of the red label on the L-DNA.

For more information, check the link mentioned below – :

Adaptive PCR, a New Powerful Technique to Speed Up Genetic Analysis


Filed Under: Reviews

 

Next Article

← Previous Article
Next Article →

Questions related to this article?
👉Ask and discuss on EDAboard.com and Electro-Tech-Online.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“engineers
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


RSS EDABOARD.com Discussions

  • Identification of a 6 pin smd chip (sto-23-6) marked E2
  • Dynacord enter protect
  • IGBTs without negative gate drive
  • Need suggestions in task NI6363 retrigger (analog trigger)
  • Monte-Carlo simulation error on ADE-XL

RSS Electro-Tech-Online.com Discussions

  • Does US electric code allow branching ?
  • Faulty heat air gun (dc motor) - problem to locate fault due to Intermittent fault
  • Fun with AI and swordfish basic
  • Sump pit water alarm - Kicad 9
  • turbo jet fan - feedback appreciated.

Featured – LoRa/LoRaWan Series

  • What is the LoRaWAN network and how does it work?
  • Understanding LoRa architecture: nodes, gateways, and servers
  • Revolutionizing RF: LoRa applications and advantages
  • How to build a LoRa gateway using Raspberry Pi
  • How LoRa enables long-range communication
  • How communication works between two LoRa end-node devices

Recent Articles

  • How IoT network topologies work
  • The top five AI startups to watch in 2025
  • STMicroelectronics unveils SoC based on secure MCU
  • Nexperia’s 48 V ESD diodes support higher data rates with ultra-low capacitance design
  • Taoglas releases Patriot antenna with 18 integrated elements covering 600 to 6000 MHz

EE ENGINEERING TRAINING DAYS

engineering

Submit a Guest Post

submit a guest post
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • Battery Power Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • Subscribe to our newsletter
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search Engineers Garage

  • Electronic Projects & Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe