Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Arduino Based Wireless Sensor Network

By Neha Rastogi

While completing a coursework on MSc, Peter Haban developed a WSN which he later used for his Arduino controlled greenhouse project. It is an energy efficient network based on the Arduinos and XBee ZNet 2.5 modules. Before proceeding, it’s important to get a brief idea about a Wireless Sensor Network. In this system, there are various spatially distributed autonomous sensors that monitor the environmental conditions like temperature, sound, etc which is passed to the main location. It was primarily developed for the battlefield surveillance but nowadays it is used for various industrial and consumer applications. 
 
 
 
In this DIY project, the network collects different environmental readings with the help of 3 sensor nodes that submit soil moisture, humidity, temperature, etc. Apart from these, he developed a concentrator node to upload data sets on database, an LCD node to display datasets on LCD and an actuator node that extracts temperature values and denotes them by turning on the LEDs/fans. The main components utilized in building this network are- sensors, nodes, Arduinos, XBee, Ethernet and Flot. 
 
Moving on to the database, Peter stored it in a single table as he was unaware of the amount and kind of data. However, as there are different nodes that render a separate kind of dataset, one needs to make a different table for the data submitted by each node. After this, he wrote two PHP scripts to enter the sensor readings into the database table so as to extract the data and display it on LCD. 
Further, when it came to XBee network, it could be used without Arduino but as he wanted to read multiple sensors with each node, he decided to base each of them using one Arduino and one XBee shield. Then in order to communicate with the XBee modules, he chose the API firmware which suited the needs of the project. 
 
Peter used 5 sensors in the network for determining temperature, humidity, soil moisture, light and water level. Then he placed all these sensors in a soda can with a 12V fan mounted at one end to suck the air. Lastly, in order to save power during the delay phases when the Arduino board is idle, he made use of ATMega as it is quite energy efficient.  As per Peter, the idea of writing the system himself allowed him to gain a valuable experience during the project and he was able to make it more power saving. Moreover working with a cross-platform allowed him to replace a lot of components without actually intervening with the design of the system. 
 
As an improvement, Peter also suggested that although Arduino is quite convenient for prototyping, it would be wiser to replace it with a Waspmote. It uses an optimized platform and at the same time renders benefits like power efficiency, certification, range, and standardization thereby making it a feasible option for the commercial and industrial use. 

Filed Under: Reviews

 

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • PS2 Keyboard To Store Text In SD Card Using Arduino Circuit Setup On Breadboard
    How To Use PS2 Keyboard To Store Text In SD Card Using Arduino- (Part 42/49)
  • Wireless Path Tracking System Using Mouse, XBee And Arduino Circuit Setup On Breadboard
    How To Make A Wireless Path Tracking System Using Mouse, XBee And Arduino- (Part 43/49)
  • How to Make a Wireless Keyboard Using Xbee with Arduino- (Part 44/49)
  • Making Phone Call From GSM Module Using Arduino Circuit Setup On Breadboard
    How to Make Phonecall From GSM Module Using Arduino- (Part 45/49)
  • How to Make a Call using Keyboard, GSM Module and Arduino
    How To Make A Call Using Keyboard, GSM Module And Arduino- (Part 46/49)
  • Receiving SMS Using GSM Module With Arduino Prototype
    How to Receive SMS Using GSM Module with Arduino- (Part 47/49)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • Renesas delivers intelligent sensor solutions for IoT applications
  • Microchip Technology releases AVR-IoT Cellular Mini Development Board
  • Qualcomm acquires Cellwize to accelerate 5G adoption and spur infrastructure innovation
  • MediaTek’s chipset offers high-performance option for 5G smartphones
  • Nexperia’s new level translators support legacy and future mobile SIM cards

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • ADS Cascode Power Amplifier Loadpull Problem
  • lna+mixer noise figure problem
  • Thermal pad
  • DC DC converter output voltage rise time
  • building lm2596 dc dc using Arduino uno

RSS Electro-Tech-Online.com Discussions

  • Where is the fuse ?
  • 500+V power supply from 9V battery using ZVS
  • Control Bare LCD With ATmega328p
  • undefined reference header file in proteus
  • Engine compression high voltage ignition voltage?
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering