Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Astable Multivibrator- Working and Principles

By Arpit jain

Multivibrators are another form of oscillators. Oscillator is an electronic circuit that is capable of maintaining AC signal at the output. It can generate a square wave, ramp or pulse waveforms. For oscillation, the oscillator must fulfill two Barkhausen conditions:

 The loop gain must be slightly greater than unity 

 The loop phase shift must be 0 degrees or 360 degree
 
To fulfill both the conditions the oscillator must have some form of amplifier and a portion of its output must be fed back re-generatively to the input. If the gain of the amplifier is less than unity, the circuit will not oscillate and if it is greater than unity, the circuit will be over driven and produce a distorted waveform. A simple oscillator can produce sine wave but it cannot generate a square wave. The square wave can be generated by use of multivibrator.
 
A multivibrator is a form of the oscillator which has two stages due to which we can get output by either of the states. It is basically two amplifier circuits arranged with regenerative feedback. In this, neither of the transistors conducts simultaneously. At a time, only one transistor conducts and another one is in off state. Some circuits have certain states; the state which has fast transition is called switching processes,  where there is fast change of current as well as voltage. This switching is termed as triggering. Hence, we can trigger the circuit internally or externally.
 
Circuits have two states -:
 
One is stable state in which a circuit remains forever without any triggering.
Another state is unstable state: In this state the circuit stays for a limited period of time without any external triggering and switches into another state. Hence the use of multivibartors are in two states circuits like timers and flip flop.
 
Astable multivibrator using transistor
 
It is free running oscillator which switches continuously between its two unstable states. With no external signal applied, the transistors alternately switch from cutoff to saturation state at a frequency determined by the RC time constants of the coupling circuits. If these time constants are equal (R and C are equal) then a square wave will be generated with a frequency of 1/1.4 RC. Hence astable multivibrator is called pulse generator or square wave generator. The larger the value of base load R2 and R3 w.r.t collector load R1 and R4, the larger is the current gain, and sharper will be the waveform edge.
 
The basic principle of the Astable multivibrator is a slight variation in the electrical properties or characteristics of the transistor. This difference causes one transistor turn ON fast than the other when power is applied for the first time, thereby triggering oscillations.
 
Circuit Explanation
 
 The Astable multivibrator consists of two cross-coupled RC amplifiers.
 The circuit has two unstable states
o When V1 = LOW and V2 = HIGH then Q1 ON and Q2  OFF
o When V1= HIGH and V2 = LOW then Q1 OFF and Q2 ON
 In this R1  = R4 , R2 = R3, R1 should be greater than R2
 C1=C2
 When the circuit is first powered up  then neither of the transistors is ON
 The base voltage of both the transistor starts increasing. Any one of the transistor turns ON first due to the difference in doping and electrical characteristics of the transistor
 
Circuit Diagram showing Working of Transistor based Astable Multivibrator
Fig. 1: Circuit Diagram showing Working of Transistor based Astable Multivibrator
 
 We cannot say which transistor conducts first so we assume that Q1 conducts first and Q2 is OFF (C2 fully charged).
 Q1 conducts and Q2 is off hence VC1 = 0V since all current bypass to the ground due to short circuit of Q1, and VC2 = Vcc since all voltage drops at VC2 due to open circuit of TR2 (equal to power supply)
 Due to a high voltage of VC2 capacitor C2 starts charging via Q1 through R4 and C1 starts charging through R2 via Q1. The time taken to charge C1 (T1 = R2C1) is greater than the time taken to charge C2 (T2 =R4C2).
 As C1 right plate is connected to base of Q2 and is charging so this plate is at high potential and when it exceeds 0.65V voltage then it turns ON Q2.
 As C2 is fully charged so its left plate is at –Vcc or -5V and is connected to the base of Q1. Hence it turns OFF Q2
 Now TR1 is OFF and Q2 conducts therefore VC1 = 5V and VC2 = 0V. The C1 left plate is previously at a voltage of -0.65V which starts rising to 5V and is connected to the collector of Q1. The C1 first discharges from 0V to 0.65V and then starts charging through R1 via Q2. During charging, the right plate of C1 is at a low potential which turns OFF the Q2.
 The C2 right plate is connected to the collector of Q2 and is previously at +5V. So C2 first discharges from 5V to 0V and then starts charging through resistance R3. The left plate of C2 during charging is at high potential which turns ON Q1 high when it reaches to a voltage of 0.65V.
 
Circuit Diagram showing Working of Transistor based Astable Multivibrator
Fig. 2: Circuit Diagram showing Working of Transistor based Astable Multivibrator
 
 Now Q1 conducts and Q2 is OFF. The above sequence repeats and we get a waveform at both collectors of the transistor which is out of phase with each other
 For getting a perfect square wave by either collector of transistor we take both transistor collector resistance, base resistance equal i.e. (R1=R4), (R2=R3) and also the same value of capacitor which makes our circuit symmetrical. Hence duty cycle for the low and high value of output waveform is same which generates a square wave
 The time constant of the waveform depends on the base resistance and collector of the transistor. We can calculate its time period by : Time constant = 0.693RC

 

Circuit Diagrams

Circuit-Diagram-Transistor-Astable-Multivibratorl


Filed Under: Electronic Projects

 

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • Introduction to Brain Waves & its Types (Part 1/13)
  • Understanding NeuroSky EEG Chip in Detail (Part 2/13)
  • Performing Experiments with Brainwaves (Part 3/13)
  • Amplification of EEG Signal and Interfacing with Arduino (Part 4/13)
  • Controlling Led brightness using Meditation and attention level (Part 5/13)
  • Control Motor’s Speed using Meditation and Attention Level of Brain (Part 6/13)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What are the battery-selection criteria for low-power design?
  • Key factors to optimize power consumption in an embedded device
  • EdgeLock A5000 Secure Authenticator
  • How to interface a DS18B20 temperature sensor with MicroPython’s Onewire driver
  • Introduction to Brain Waves & its Types (Part 1/13)

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • Electrical Lenght of Microstrip Transmission Lines
  • How to Draw/Display a BMP or PNG on 3.2" TFT Display with inbuilt ILI9341 IC
  • file edit
  • Making a ducted soldering fan?
  • 74HC595 creating Fake output

RSS Electro-Tech-Online.com Discussions

  • DIY bluetooth speaker
  • Turn CD4029 on/off with TTP223
  • Need a ducted soldering fan for solder smoke extraction
  • Question about ultrasonic mist maker
  • Power failure relay options
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering