Engineers Garage

  • Electronics Projects and Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe

Creating Safer Batteries with Artificial Intelligence

By Shreepanjali Mod January 3, 2017

A research team from Stanford University claims that they have identified more than 20 solid electrolytes with the help of techniques that have been adapted from machine learning and AI. The team members claim that they can replace the volatile liquids, mostly used in smartphones or laptops and several other electronic devices with great ease. A doctoral candidate and a team member, Austin Sendek, says, “Electrolytes shuttle lithium ions back and forth between the battery’s positive and negative electrodes. Liquid electrolytes are cheap and conduct ions well, but they can catch fire if the battery overheats or gets short-circuited by puncturing.”

He further adds that, “The main advantage of solid electrolytes is stability. Solids are far less likely to blow up or vaporize than organic solvents. They’re also much more rigid and would make the battery structurally stronger.”

To shorten up the time and in place of testing individual compounds quite randomly, the team chose AI with machine learning and built predictive models from experimental database. They prepared a computer algorithm to memorize how to differentiate between good and bad compounds on the basis of pre-existing data. The researchers are of the opinion that this one works just like the facial recognition algorithm that slowly learns to identify faces after screening multiple examples.

Scientists turn to AI to create safer batteries

Sendek further explains, “The number of known lithium-containing compounds is in the tens of thousands, the vast majority of which are untested. Some of them may be excellent conductors. We developed a computational model that learns from the limited data we already have, and then allows us to screen potential candidates from a massive database of materials about a million times faster than current screening methods.”

To make up this model, Sendek spent more than 24 months to assemble all data about solid substances like lithium. The model made use of numerous criteria to finalize on the best materialize such as stability, cost, abundance, stability, as well as its ability to send these lithium ions and resend electrons via the battery’s circuit. Sendek then concludes, “We screened more than 12,000 lithium-containing compounds and ended up with 21 promising solid electrolytes. It only took a few minutes to do the screening. The vast majority of my time was actually spent gathering and curating all the data, and developing metrics to define the confidence of model predictions.”


Filed Under: News

 

Next Article

← Previous Article
Next Article →

Questions related to this article?
👉Ask and discuss on EDAboard.com and Electro-Tech-Online.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“engineers
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


RSS EDABOARD.com Discussions

  • Does mobility carrier ratio changes with Wn? (0.18um) inverter design
  • DC/DC Converter with wide range input
  • i need an embedded c program that will read a 12 bit memory address from the io pins and output the data to pins from the memory in a 8051 mcontroller
  • Output return loss mismatch
  • DIY Buck Boost Converter using XL6019

RSS Electro-Tech-Online.com Discussions

  • parallel-to-serial problem
  • Back to the old BASIC days
  • Guitar electronics project
  • 12v battery, 18v magic
  • Actin group needed for effective PCB software tutorials

Featured -USB Series

  • Controller Chip Selection for Developing USB Enabled Device (Part 6/6)
  • Signal and Encoding of USB System (Part 5/6)
  • USB Requests and Stages of Control Transfer (Part 4/6)
  • USB Descriptors and their Types (Part 3/6)
  • USB Protocol: Types of USB Packets and USB Transfers (Part 2/6)
  • Introduction to USB: Advantages, Disadvantages and Architecture (Part 1/6)

Recent Articles

  • Littelfuse driver achieves less than 1 µA standby current for energy-efficient designs
  • Microchip optimizes power consumption in transceiver-less FPGA design for automotive applications
  • What is an IoT platform and when is one useful?
  • Silanna launches laser driver IC with sub-2 ns FWHM pulse for LiDAR application
  • LEM introduces current sensors with bandwidth up to 2.5 MHz for precision applications

EE ENGINEERING TRAINING DAYS

engineering

Submit a Guest Post

submit a guest post
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • Battery Power Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • Subscribe to our newsletter
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search Engineers Garage

  • Electronics Projects and Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe