Engineers Garage

  • Electronic Projects & Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe

Darlington Pair

By Ashutosh Bhatt December 26, 2013

The transistor has several characteristics; one of them is current gain which can be defined as the ratio of output current and input current and is denoted by beta.

Transistor gain or Current gain (β) = load or collector current/ input or base current

Load current = Current gain (beta) × base current

For a normal transistor, beta value is 100.

Above equation tells that the output current is 100 times the input current when beta = 100.

For improved efficiency and high current gain compound devices are used. Darlington pair or Darlington transistor is one of them.

In common emitter configuration of transistor, current gain is the ratio of collector current to base current. We require high gain to drive high loads like an audio amplifier, power regulators, motor controller, etc. A single transistor is not good enough to drive high gain. This problem can be solved by using a Darlington pair.

Basic principle

The transistors are connected in such a way that the input current is first amplified by the first transistor and then to the base of the second transistor. Therefore, the current is again amplified by the second transistor which gives a high current gain at the output.

Circuit operation and design

The darlington pair has two transistors connected in a way so that it provides a high value of gain even at low base current. A darlington pair can be formed by two NPN or PNP transistors. Here we will talk about the NPN one.

The transistors used here are in common emitter configuration. One of the transistors is acting like a slave and another one is a master to pull up the gain at the output. The slave transistor or triggering transistor emitter is connected to the base of the master transistor. The slave transistor output emitter current is used for deriving high at base of master transistor. The collector of both the transistors are connected with each other and then with a positive supply like 5V. The current amplified by slave transistor is again amplified by the master transistor. Hence current at emitter is so high which is capable of deriving high loads at the output.

Let’s consider that the current gain of slave transistor is beta1 and the master transistor is beta2. The overall current gain of the transistor will be the product of beta1 and beta2. For a standard transistor beta is 100. Therefore overall current gain is 10000 times of the input current which is very high. So this value of current gain is able to give high current at the output.

Circuit Diagram of Darlington Pair

Fig. 1: Circuit Diagram of Darlington Pair

Lets say Current gain of the first transistor

Beta1= Ic1 / Ib1

Ic1 = beta1.Ib1

The current gain of next transistor,

Beta2 = Ic2 / Ib2

Then Ic2 = Beta2*Ib2

Total current at the collector is Ic = Ic1 + Ic2

Ic= Beta1.Ib1 + Beta2.Ib2

Since the base current of the second transistor is

Ib2 = Ib + Ic1

Ib2 = Beta1.Ib + Ib         (since Ib= ib1)

Ib2 = Ib(1+ Beta1)

Substituting in the above equationIc = Beta1.

Ib + Beta2.Ib (1+Beta1)

Ic = Ib(Beta1 + Beta2 + Beta1*Beta2)

The individual beta are neglected since the product of both the current gain are very high as compared to their sum. Therefore we can write the above equation as

Ic = Ib (Beta1 +Beta2)

From the above equation, we can analyse the total current gain,

Beta = Beta1*Beta2

From this derivation, we can see that a small positive voltage at base derives a high current gain. This gain is then used for high current loads

Generally, an NPN silicon type transistor conducts only when its base to emitter junction voltage is greater than or equal to 0.7V (practically, it is 0.65V). But in darlington pair we are using two transistors back to back which increases the value of threshold voltage for both the transistors. Hence for darlington configuration, the base to emitter voltage should be greater than or equal to 1.4V.

Advantages of Darlington Pair

• High current gain than single transistor

• Very High input impedance.

• Easy and convenient

Filed Under: Tutorials

 

Next Article

← Previous Article
Next Article →

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“engineers
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


RSS EDABOARD.com Discussions

  • Reducing "shoot-through" in offline Full Bridge SMPS?
  • Checking line impedance
  • Why do I hear whistling sounds in my vents?
  • What is the purpose of using a VCVS?
  • Mains inverter with switching node going out on the mains cable!?

RSS Electro-Tech-Online.com Discussions

  • Why can't I breadboard this oscillator?
  • Failure of polypropylene motor-run capacitors
  • a point I can't understand about the sinc expression
  • Quick advice on remote car starter?
  • Wideband matching an electrically short bowtie antenna; 50 ohm, 434 MHz

Featured – RPi Python Programming (27 Part)

  • RPi Python Programming 21: The SIM900A AT commands
  • RPi Python Programming 22: Calls & SMS using a SIM900A GSM-GPRS modem
  • RPi Python Programming 23: Interfacing a NEO-6MV2 GPS module with Raspberry Pi
  • RPi Python Programming 24: I2C explained
  • RPi Python Programming 25 – Synchronous serial communication in Raspberry Pi using I2C protocol
  • RPi Python Programming 26 – Interfacing ADXL345 accelerometer sensor with Raspberry Pi

Recent Articles

  • AC-DC power supply extends voltage range to 800 V DC
  • Infineon’s inductive sensor integrates coil system driver, signal conditioning circuits and DSP
  • Arm Cortex-M23 MCU delivers 87.5 µA/MHz active mode
  • STMicroelectronics releases automotive amplifiers with in-play open-load detection
  • Convection-cooled power controller integrates EtherCat connectivity

EE ENGINEERING TRAINING DAYS

engineering

Submit a Guest Post

submit a guest post
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • Battery Power Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • Subscribe to our newsletter
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search Engineers Garage

  • Electronic Projects & Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe