Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Did You See Tesla’s Sweet Roof?

By Shreepanjali Mod

For the first time in history, researchers have been successful in simulating particles that are capable of self-assembling into frameworks that formulate geometrical arrangements known as Archimedean tilings. One important factor that is significant in in realization of such structures in a strategy known as minimal positive design, it considers both chemical selectivity and geometry of particles for this purpose. The process has multiple applications in molecular self-assembly that can one day be used in creation of a large selection of nanoscale technologies.

Prior to this, the researchers were successful in self-assembling particles into Platonic tilings that are much simpler arrangements with result periodic arrays of single shapes like squares hexagons, as well as triangles. For this purpose, researchers applied a strategy known as positive design that promotes desired structure on the basis of particle geometry. As and when these particles get fused and cooled. These self-arrange into Platonic wings all by themselves them on the basis of their underlying physical, chemical, and thermodynamic interactions.

Archimedean tilings

Self-assembling particles are the next level simple arrangement. Archimedean tilings have a much more difficult structure. Archimedean tilings are made up of two-three different shapes and have a single vertex. There are eight types of these, and the new design strategy can help in construction of all eight of those. The new strategy has the “minimal” aspect that related with its chemical sensitivity. The researchers discovered that one can identify all interparticle interactions that are included in the desired arrangement. The lead researcher Whitelam says, “The results show that you need ‘chemical specificity’ of interactions to self-assemble certain simple, regular structures. I wanted to write a paper about the amount of ‘information’ that you need to ‘program’ into a particle in order to allow it to self-assemble, in the presence of many copies of itself, into a desired structure. .The simplest way of tiling a plane is to cover it with triangles, or with squares, or with hexagons. These patterns are called the Platonic or regular Archimedean tilings. Other authors have shown that particles with certain geometric properties—with sticky patches at certain angles—can spontaneously form the networks that are equivalent to these tilings, meaning that if you draw lines between particle centers, then the picture you get looks like a tiling.”

“The next simplest way to cover a surface is with combinations of two or three regular polygons, and these patterns are called the semi-regular Archimedean tilings (often just Archimedean tilings). Other researchers have used simulations to show that particles with the correct geometry alone probably can’t self-assemble into such structures. My work confirms this fact, but shows that what does work is if the particle interactions are chemically specific, meaning that the sticky patches only stick to certain other sticky patches. In this way, particles avoid making lots of binding mistakes, and manage to find their way to the correct structure.”
 

Filed Under: News

 

Questions related to this article?
👉Ask and discuss on EDAboard.com and Electro-Tech-Online.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • PS2 Keyboard To Store Text In SD Card Using Arduino Circuit Setup On Breadboard
    How To Use PS2 Keyboard To Store Text In SD Card Using Arduino- (Part 42/49)
  • Wireless Path Tracking System Using Mouse, XBee And Arduino Circuit Setup On Breadboard
    How To Make A Wireless Path Tracking System Using Mouse, XBee And Arduino- (Part 43/49)
  • How to Make a Wireless Keyboard Using Xbee with Arduino- (Part 44/49)
  • Making Phone Call From GSM Module Using Arduino Circuit Setup On Breadboard
    How to Make Phonecall From GSM Module Using Arduino- (Part 45/49)
  • How to Make a Call using Keyboard, GSM Module and Arduino
    How To Make A Call Using Keyboard, GSM Module And Arduino- (Part 46/49)
  • Receiving SMS Using GSM Module With Arduino Prototype
    How to Receive SMS Using GSM Module with Arduino- (Part 47/49)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • Renesas delivers intelligent sensor solutions for IoT applications
  • Microchip Technology releases AVR-IoT Cellular Mini Development Board
  • Qualcomm acquires Cellwize to accelerate 5G adoption and spur infrastructure innovation
  • MediaTek’s chipset offers high-performance option for 5G smartphones
  • Nexperia’s new level translators support legacy and future mobile SIM cards

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • Reference driver for negative/above rail voltages.
  • SMPS topology 24v 10A (prefer simplicity, cost-effective, and high efficiency)
  • Thermal pad
  • Bursts in AHB lite
  • lna+mixer noise figure problem

RSS Electro-Tech-Online.com Discussions

  • Identify a circuit.
  • Voltage integration in LTspice (net volts across inductor)
  • Where is the fuse ?
  • 500+V power supply from 9V battery using ZVS
  • Control Bare LCD With ATmega328p
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering