Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Engineers Introduce A Novel Detection Method For DNA Testing

By Shreepanjali Mod

DNA mutation detection is no more a tedious and time consuming task. The recently developed electrical graphene chip optimizes not only time but cost and equipment as well. The chip comes with a graphene field effect transistor that comes with a DNA probe. The helix shaped double-stranded DNA consists of a sequence coding that has been formulated to detect RNA or DNA with special single nucleotide mutation. Whenever, a specific type of RNA or DNA binds itself with the probe, the system generates an electrical signal.

The probe is joined by a “normal” DNA strand which, in return, is attached with a weaker strand. The weak strand comes with four G’s in its coding sequence that gets replaced by inosines that weakens its bond with huge impact. The two strands, in unison, create a double helix structure that works as a DNA strand displacement. Any DNA strand that complements the normal strand perfectly binds with the regular strand instantly while the weak strand is discarded off. Since, the DNA probe has been in connection with the graphene transistor, the chip operates in an electronic manner. Any changes or modifications are finally transmitted to the mobile device with the help of signal.

The double-helix shaped probe is preferred over others because it offers more selectivity over other n single-stranded ones. The weak DNA strand can only be displaced by that DNA strand that matches the regular strand in a flawless manner. The probe will survive longer because of its double stranded structure. This allows the chip to check lengthier DNA segments for any kind of mutation. Higher the length of the probe better is the certainty of uniqueness of DNA sequence in genome.

The newly developed biosensor chip presents a completely new method for detection of most commonly occurring genetic mutations such as SNP (Single Nucleotide Polymorphism). SNP happens to be a mutation in an individual nucleotide base in human DNA sequence. There are a number of SNPs that are closely associated with neurodegenerative disorders, diabetes, cancer, and several other severe pathological conditions. In short, this technology can be implied for finding solutions to a number of medical problems. It can also help in screening of several fatal diseases like cancer, monitoring bookmarkers for several diseases, as well as real time detection of microbial and viral sequences. The next phase of this project aims addition of wireless feature in the test. The team responsible for a development is that of few bioengineers from University of California located in San Diego. 


Filed Under: News

 

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • Introduction to Brain Waves & its Types (Part 1/13)
  • Understanding NeuroSky EEG Chip in Detail (Part 2/13)
  • Performing Experiments with Brainwaves (Part 3/13)
  • Amplification of EEG Signal and Interfacing with Arduino (Part 4/13)
  • Controlling Led brightness using Meditation and attention level (Part 5/13)
  • Control Motor’s Speed using Meditation and Attention Level of Brain (Part 6/13)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What are the battery-selection criteria for low-power design?
  • Key factors to optimize power consumption in an embedded device
  • EdgeLock A5000 Secure Authenticator
  • How to interface a DS18B20 temperature sensor with MicroPython’s Onewire driver
  • Introduction to Brain Waves & its Types (Part 1/13)

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • ADS error message: Internal timestep 1.91586e-10 too small at time 5.00000e-10
  • Pull up via GPIO
  • Timer MC14541B wrong delay
  • Band Pass Filte
  • Horizontally flipping the boardin Allegro

RSS Electro-Tech-Online.com Discussions

  • Best way to reduce voltage in higher wattage system?
  • Turn CD4029 on/off with TTP223
  • Need a ducted soldering fan for solder smoke extraction
  • Power failure relay options
  • DIY bluetooth speaker
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering