Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

How To Build DIY Wind Turbine

By Neha Rastogi

Being a student in the field of sustainable energy technology, Simon took part in a course introduced by an NGO named Nea Guinea. As a part of this course, 5 participants along with the instructor worked together to build a wind turbine within 9 days. The objective of this project was to promote the knowledge of craftsmanship and engage in production processes so as to attain a higher level of self sufficiency.

small-wind-turbine

Figure 1: Small wind turbine
 

Some of the main components utilized in the project include a rotor, an alternator, tail and a mechanic frame for connecting all the parts together. In this project, each part had its own significance in the functioning of the turbine. The rotor was prepared with a diameter of 2.4 meters which implies that each blade was 1.2 meters long.

The alternator encompassed a pair of magnet disks rotating alongside the blades and stator containing the assembly of coils. It had a power rating of 700 W but the output varied as per the speed of the wind. It’s important to note that the magnet disks as well as the assembly of coils had to be casted in vinyl ester to prevent corrosion. The tail vane played a crucial role of turning the rotor into the direction of wind to capture maximum power.

The procedure started with cutting the wooden planks and carving them into blades with a twisted shape in a way that the width changes along the length so as to capture more force of the wind. Simultaneously, the team also started building the device which was meant to wind the coils. For this, they created a template and assembled it on a wooden block, which was then fixed to a vice. By turning the template, they wound the coils in the desired form.

The next step was to create the moulds, which held the magnetic disks and coil assembly into an encapsulating form of vinyl ester that dried up and hardened in few hours. Similarly, another template was created to place the magnets on the metal disks in a way that each of them carried 12 magnets placed 30 degrees apart from each other.

Next, the metal rods were grinded and welded together to form the major mechanical parts of the turbine. Then they assembled the magnetic disks and soldered the coils together. After this, they casted the stator with the help of earlier created moulds and some resin along with a catalyst and talcum powder to dry it up quickly. The turbine was prepared by assembling all the pieces together namely the rotor, alternator and the tail. In order to keep the wind turbine perpendicular to the wind and turn the turbine out of the wind (in case of very strong winds) they decided to shape the tail vane in the form of a banana.

After connecting all the parts, they lifted a tower mounted with the turbine on top of it. Then they connected all the cables and electrical components to measure the power output. Their DIY wind turbine was able to generate an average of 500 watts.


Filed Under: Reviews

 

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • PS2 Keyboard To Store Text In SD Card Using Arduino Circuit Setup On Breadboard
    How To Use PS2 Keyboard To Store Text In SD Card Using Arduino- (Part 42/49)
  • Wireless Path Tracking System Using Mouse, XBee And Arduino Circuit Setup On Breadboard
    How To Make A Wireless Path Tracking System Using Mouse, XBee And Arduino- (Part 43/49)
  • How to Make a Wireless Keyboard Using Xbee with Arduino- (Part 44/49)
  • Making Phone Call From GSM Module Using Arduino Circuit Setup On Breadboard
    How to Make Phonecall From GSM Module Using Arduino- (Part 45/49)
  • How to Make a Call using Keyboard, GSM Module and Arduino
    How To Make A Call Using Keyboard, GSM Module And Arduino- (Part 46/49)
  • Receiving SMS Using GSM Module With Arduino Prototype
    How to Receive SMS Using GSM Module with Arduino- (Part 47/49)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What is a low power design?
  • Renesas partners with Tata to accelerate progress in advanced electronics
  • STMicroelectronics’ new touchscreen controller for smartphones enables longer runtime
  • Samsung unveils ISOCELL image sensor with industry’s smallest 0.56μm pixel
  • Renesas and Cyberon to deliver integrated voice-user interface solutions

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • Code Optimization
  • Natural Convection Heatsink for 80W power dissipation?
  • Code Optimization
  • Natural Convection Heatsink for 80W power dissipation?
  • Help identifying drop in ssignal

RSS Electro-Tech-Online.com Discussions

  • intro to PI
  • Lighting a .010 green fiber optic with led
  • Bridge purpose in connecting the two functional circuit
  • ICM7555 IC duty cycle limit at high frequency?
  • How to quickly estimate lead acid battery capacity ?
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering