Engineers Garage

  • Electronics Projects and Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe

New research may keep lithium metal batteries from overheating

By Shree Mod March 18, 2020

A team of nanoengineers at the University of California San Diego recently developed a safety feature that keeps lithium metal batteries from overheating and catching fire in the case of an internal short circuit.

UC San Diego nanoengineers developed a separator that could make lithium metal batteries fail safely so that they do not rapidly overheat, catch fire or explode. (Photo: David Baillot/UC San Diego Jacobs School of Engineering)

A small tweak was made to a distinct battery part known as the separator. The component works as a barrier between the cathode and anode to slow down the energy flow that rises inside the battery during short circuits. The team was led by a nano-engineering professor, Ping Liu, from UC San Diego along with his PhD student Matthew Gonzalez.

“We’re not trying to stop battery failure from happening. We’re making it much safer so that when it does fail, the battery doesn’t catastrophically catch on fire or explode,” said Gonzalez.

Repeated charging leads to the growth of needle-like structures (dendrites) on the anode. It is one of the main reasons behind the failure of lithium metal batteries. As time goes by, the dendrites grow so long that they puncture the separator creating a bridge between the cathode and anode. This causes an internal short circuit.

Internal short circuits result in an excessive flow of electrons between two electrodes, causing the battery to instantly overheat and stop working. To resolve this issue, the UC San Diego team developed a separator that softens this occurrence. One side of this separator is covered by a very thin, partially conductive network of carbon nanotube, which intercepts the formation of any dendrites in the anode.

Whenever any dendrite grows to pierce through the separator and this web, the nanotubes provide a freeway to excessive electrons that slowly drain out through them rather than rushing straight into the cathode.

Gonzalez compared this new battery separator with a spillway at a dam. “When a dam starts to fall, a spillway is opened up to let some of the water trickles out in a controlled fashion so that when the dam does break and spill out, there’s not a lot of water left to cause a flood.”

He added: “That’s the idea with our separator. We are draining out the charge much, much slower and prevent a ‘flood’ of electrons to the cathode. When a dendrite gets intercepted by the separator’s conductive layer, the battery can begin to self-discharge so that when the battery does short, there’s not enough energy left to be dangerous.”

Other efforts have focused on the creation of separators that block dendrites from piercing through them. However, these separators still need pores to let ions flow through them, otherwise the battery won’t work. This prolongs the inevitable but does nothing to evade it. Eventually, when the dendrites pierce through the wall, the resulting short circuit is worse than normal.

The UC San Diego team took a more neutral approach to this issue. Rather than blocking the dendrites, they tried to mitigate their effects and slow down the rate of battery failure.

The lithium metal batteries equipped with the new separator developed by this team showed signs of gradual failure over 20 o 30 cycles. Meanwhile, batteries carrying normal separator failed abruptly in a single cycle.

“In a real use case scenario, you wouldn’t have any advance warning that the battery is going to fail. It could be fine one second, then catch on fire or short out completely the next,” said Gonzales. “It’s unpredictable. But with our separator, you would get advance warning that the battery is getting a little bit worse, a little bit worse, a little bit worse, each time you charge it.”


Filed Under: News
Tagged With: universityofcaliforniasandiego
 

Next Article

← Previous Article
Next Article →

Questions related to this article?
👉Ask and discuss on EDAboard.com and Electro-Tech-Online.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE Learning Center

EE Learning Center
“engineers
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


RSS EDABOARD.com Discussions

  • BOM sent to Contract assemblers doesnt correspond to schem
  • Half-bridge LLC resonant converter using UCC25600
  • Lightbox circuit help
  • Transistor circuit in audio
  • Antiparallel Schottky Diodes VDI-Load Pull

RSS Electro-Tech-Online.com Discussions

  • Kawai KDP 80 Electronic Piano Dead
  • An Update On Tarrifs
  • Trying to use a L9110s motor driver chip
  • I want to make a CRT with some modifications But i have no Idea where to start
  • Funny Images Thread!

Featured – Designing of Audio Amplifiers part 9 series

  • Basics of Audio Amplifier – 1/9
  • Designing 250 Milli Watt Audio Power Amplifier – 2/9
  • Designing 1 Watt Audio Power Amplifier – 3/9
  • Designing a Bass Boost Amplifier – 4/9
  • Designing a 6 Watt Car Audio Amplifier – 5/9
  • Design a low power amplifier for headphones- 6/9

Recent Articles

  • Fischer connector system adds ratchet locking system designed for 300g shock resistance
  • Littelfuse introduces tactile switch with enhanced bracket peg design for mounting strength
  • Infineon releases GaN switch with monolithic bidirectional design
  • Sienna Semiconductor data converters feature sample rates from 20 to 250 Msps
  • Delta’s 5,500 W power supplies achieve 97.5% energy efficiency for AI servers

EE ENGINEERING TRAINING DAYS

engineering

Submit a Guest Post

submit a guest post
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • Battery Power Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • Subscribe to our newsletter
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search Engineers Garage

  • Electronics Projects and Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe