Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Novel Method Enhances Accuracy of Imaging Systems

By Parul Gupta

The enhanced method for illustrating the position of objects by imaging systems is the result of novel study by researchers at the University of Chicago. The study offers a mechanism – known as single pixel interior filling function, or SPIFF to correct and identify systematic errors in image and data analysis employed in numerous areas of engineering and science.

“Anyone working with the imaging data on small objects – or objects that appear small – who intends to determine and track their positions in space and time will advantage from the single-pixel interior filling function method,” says co-principal investigator Norbert Scherer, an UChicago chemistry lecturer.

Scientists across the sciences employing imaging to learn about objects on scales varying from the highly small, like nanometres, to the very big, such as astrophysical scales. Their work often comprises tracking the movement of such objects to learn about their properties and behaviour. Numerous imaging systems and image-based detectors are constituted of pixels, like with a mega-pixel cell phone.

accuracy of imaging systems

So-called particle tracking enables scientists to determine the position of an object down to a single pixel and even explore sub-pixel localization to better than 1-10th of a pixel accuracy. With an optical microscope’s resolution of about 250 nanometres and an efficient pixel size of about 80 nanometres, particle tracking enable researchers to locate the centre or a location of an object to within a few nanometres, provided enough photons are estimated.

But such sub-pixel resolution depends on algorithms to calculate the position of objects and their trajectories. Employing such algorithms often results in errors of accuracy and precision due to factors like nearby or overlapping objects in the background noise and image.

SPIFF can rectify the errors with little added computational costs according to Scherer. “Till this work, there were no simple methods to determine if the tracking and sub-pixel localization was precise and to correct the error if it was not,” he says. “Analysing an image to avail a rough estimate of an object’s position is not too intricate, but making optimal use of all the data in an image to avail the finest possible tracking data can be truly challenging,” says David Grier, lecturer of physics at New York University, who was not involved in the study. “Given how extensively image-based particle tracking has penetrated physics, biology, chemistry and numerous engineering disciplines, this way should be exceedingly adopted.”

Sub-pixel information analysis can be biased by subtle features of the image-creation process, according to Grier, and such biases can shift a trajectory’s apparent placement by as much as half of a pixel relative to its true position.

The scientists have now applied this method to numerous other datasets, comprising nanoscale features of cells, single molecules and metallic nanoparticles, confirms Scherer, adding that the SPIFF method is applicable to all tracking algorithms


Filed Under: News

 

Questions related to this article?
👉Ask and discuss on EDAboard.com and Electro-Tech-Online.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • Introduction to Brain Waves & its Types (Part 1/13)
  • Understanding NeuroSky EEG Chip in Detail (Part 2/13)
  • Performing Experiments with Brainwaves (Part 3/13)
  • Amplification of EEG Signal and Interfacing with Arduino (Part 4/13)
  • Controlling Led brightness using Meditation and attention level (Part 5/13)
  • Control Motor’s Speed using Meditation and Attention Level of Brain (Part 6/13)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What are the battery-selection criteria for low-power design?
  • Key factors to optimize power consumption in an embedded device
  • EdgeLock A5000 Secure Authenticator
  • How to interface a DS18B20 temperature sensor with MicroPython’s Onewire driver
  • Introduction to Brain Waves & its Types (Part 1/13)

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • Pull up via GPIO
  • Variable Phase shift control circuit for PWM circuit
  • Fpga wake up
  • Vco cadencd
  • Thyristor Gate Drive

RSS Electro-Tech-Online.com Discussions

  • DIY bluetooth speaker
  • Question about ultrasonic mist maker
  • HV Diodes
  • Disabled son needs advice please
  • RF modules which can handle high number of bytes per second
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering