Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Now Car Positioning And Control Get Super Precise With More Accurate MEMS Sensors From STMicroelectronics

By Shreepanjali Mod

STMicroelectronics, a leading global supplier of semiconductors, recently came up with an automotive-grade ASM330LHH which is a six-axis inertial sensor. This sensor can be used for super-high-resolution motion tracking in highly developed telematics and vehicle navigation applications.

Fig. 1: The Precision Automotive ASM330LHH Sensor
(Image Source: ST)

The ASM330LHH is capable of serving all kind of requirements for accurate consistent vehicle location that supports automated services. It also  allows highly developed dead reckoning algorithms precisely estimate the vehicle position from sensor data if satellite signals get blocked anyway. Such conditions mostly arise in dense forests, parking garages, covered roadways, tunnels, urban canyons.

The ASM330LHH is much advanced than all its counterparts, the sensor has been bestowed with a temperature stable- low noise design that pave a way for telematics services like tele-diagnostics, e-Call assistance, e-tolling, and stuff like that. The Precision inertial data across six axes meets the requirements of advanced automated-driving systems.

Magneti Marelli has chosen the ASM330LHH for the latest telematics systems that can be fitted as original equipment through global automotive groups in present in upcoming ranges of vehicles. ST owns the complete manufacturing process of the ASM330LHH which means it takes full responsibility for designing, packaging, testing, calibration, as well as supply of this sensor. This end-to-end control over the complete process leads to generation of ultra-performing sensors that assure customers about a responsive and robust supply chain with quality screening.

Andrea Onetti, the Vice President of MEMS and Sensors Group in STMicroelectronics adds, “ST is the largest supplier of MEMS sensors for automotive non-safety applications, such as navigation and telematics. Our latest-generation inertial sensor, the automotive-grade ASM330LHH, enables precise positioning for safer, smarter driving.” Engineering samples of it can be availed for evaluation by third quarter of this year while its mass production will starts in last quarter of this year. The budgetary price begins somewhere at $5.00 for all the orders that exceed 1000 units. 


Filed Under: News

 

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • Introduction to Brain Waves & its Types (Part 1/13)
  • Understanding NeuroSky EEG Chip in Detail (Part 2/13)
  • Performing Experiments with Brainwaves (Part 3/13)
  • Amplification of EEG Signal and Interfacing with Arduino (Part 4/13)
  • Controlling Led brightness using Meditation and attention level (Part 5/13)
  • Control Motor’s Speed using Meditation and Attention Level of Brain (Part 6/13)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What are the battery-selection criteria for low-power design?
  • Key factors to optimize power consumption in an embedded device
  • EdgeLock A5000 Secure Authenticator
  • How to interface a DS18B20 temperature sensor with MicroPython’s Onewire driver
  • Introduction to Brain Waves & its Types (Part 1/13)

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • Timer MC14541B wrong delay
  • simple LSB explanation please
  • Pull up via GPIO
  • Avalanche Pulser
  • Measure AC current accurateley (100mA to 10A)

RSS Electro-Tech-Online.com Discussions

  • Need a ducted soldering fan for solder smoke extraction
  • bluetooth jammer
  • Disabled son needs advice please
  • DIY bluetooth speaker
  • Someone please explain how this BMS board is supposed to work?
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering