Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Researchers Identified Catalysts at Work

By Parul Gupta

Scientists at the University of Basel have been able to gain success in identifying a silver catalyst at performance for the very first time with the assistance of an atomic force microscope. The observations obtained during an Ullmann reaction have enabled the experts to estimate the turnover of energy and deliberately to optimize the catalysis. The research explained that was performed with experts from Iran and Japan, has been published in a reputed scientific journal.

The examination of Ullmann reaction is a chemical reaction where the silver atoms catalyse the link between two carbon based atoms where in iodine was bonded in the past. Although researchers were aware about such form of reaction as a study was carried in 1901 and utilized it numerous vital chemical conversions, it was not conventionally possible to identify the intermediate product of the reaction in detail.

With use of an atomic force microscope, the panel of scientists headed by Lecturer Ernst Meyer and Dr. Shigeki Kawai belonging to the Swiss Nanoscience Institute and the Department of Physics at the University of Basel has now gained success in displaying such reaction at atomic resolution.

reaction with the silver catalyst (silver) between the carbon rings (black) and sulfur atoms (yellow) curves

Figure 1: Ullmann Reaction with the silver catalyst (silver) between the carbon rings (black) and sulfur atoms (yellow) curves
 

Surprisingly, it was disclosed that the silver atoms reacted with the molecules at temperatures of approximately -120 Degree Celsius and appear to curve like a bridge over a river. In the later stage of the reaction that needs the temperature to be enhanced to around 105 Degree Celsius and releases the end product, the silver atoms are liberated again and two carbon based atoms link together.

The Ullmann reaction has been utilized for synthesis of chemical reaction for an extremely long time now. But conventional analysis failed to reveal the spatial assortment of the organometallic in-between product. The detailed pictures now secured are the foremost to enable project partner Lecturer Stefan Goedecker from Department of Physics and University of Basel to estimate the energy turnover of the analysis carried by Ullmann reaction. This information confirms the unusual spatial arrangement of the in-between products and confirms how the reaction can be optimized.

The observation curving and flexibility of the molecules is possibly the reason why the reaction needs deliberately low temperatures of 105 Degree Celsius. The molecules are constrained to perform mechanical tension, and hence, can react more conveniently, that is at a reduced temperatures. If other catalysts could be utilized to release intermediate products such as those that are subject to tension, then the catalytic reactions are possible to be conducted at lower temperatures.

Conclusion – It would make economic and ecological sense because conventional catalysts with palladium, rhodium and platinum often need high operating temperatures of approximately 500 Degree Celsius that results in the release of waste gases in a cold form.


Filed Under: News

 

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • Introduction to Brain Waves & its Types (Part 1/13)
  • Understanding NeuroSky EEG Chip in Detail (Part 2/13)
  • Performing Experiments with Brainwaves (Part 3/13)
  • Amplification of EEG Signal and Interfacing with Arduino (Part 4/13)
  • Controlling Led brightness using Meditation and attention level (Part 5/13)
  • Control Motor’s Speed using Meditation and Attention Level of Brain (Part 6/13)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What are the battery-selection criteria for low-power design?
  • Key factors to optimize power consumption in an embedded device
  • EdgeLock A5000 Secure Authenticator
  • How to interface a DS18B20 temperature sensor with MicroPython’s Onewire driver
  • Introduction to Brain Waves & its Types (Part 1/13)

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • Slope compensation ramp calculation for UCC38084
  • Parts storage / inventory best practices and organization
  • Unusual gap shape of ETD59 ferrite core?
  • Vco cadencd
  • WH-LTE-7S1 GSM module and SIM card problem

RSS Electro-Tech-Online.com Discussions

  • surge arresters
  • NOR gate oscillator in LTspice not working
  • HV Diodes
  • intro to PI
  • Very logical explanation on low calue C3
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering