Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Transformer : Relevant Terms

By Ashutosh Bhatt

TRANSFORMERS – RELEVANT TERMS
 
·         Turns Ratio
Voltage induced into the secondary winding depends on the turns ratio of the transformer. The turns ratio is the ratio of the number of turns in the primary winding to the number of turns in the secondary winding. If the turns ratio of a transformer is 4:1, the induced voltage is lower compared to that of primary and the transformer is called step down transformer. On the contrary, if the turns ratio of a transformer is 1:4, the induced voltage is higher than that of primary and the transformer is called step up transformer.
 
If the turns ratio and the input voltage are known, the output voltage can be determined as follows
 
Turns-Ratio.jpg
 
Where, E1 & E2 are primary & secondary voltages, N1 & N2 are the number of turns in primary & secondary winding.
 
·         Power Ratio
When a transformer steps up the voltage, it steps down the current by the same ratio, thereby input and output electrical power remains constant (neglecting losses). Transformer, being a passive component, cannot produce more power from the secondary winding than what is applied to the primary.
 
·         Load Voltage
Load Voltage is same as the secondary voltage and is equal to the voltage delivered to the load.
 
·         Line Voltage
Line Voltage is the primary voltage and the voltage available at the primary from the source.
 
·         Coefficient of Coupling
In practice, no transformer is 100 percent efficient, i.e., output power is slightly less than that of input power. Since all the magnetic lines of force in the primary do not cut across the turns of the secondary coil, certain amount of flux leaks out of the magnetic circuit.  The degree of how well the primary flux is coupled into the secondary is called the “coefficient of coupling”, this in turn, determines the efficiency of the transformer.  Efficiency is the ratio of the output to the output plus the losses.
 
·         Transformer Regulation
The regulation of a transformer is the change in secondary voltage from no load to full load. It is generally expressed as a percentage of the full-load secondary voltage.
The regulation depends upon the transformer design and the power factor of the load.
 
·         Transformer ratings
Transformers are rated at their kilovolt-ampere (kVA) outputs.  Transformers are generally rated on the kVA load which the transformer can safely carry at the ambient temperature, at rated load voltage and at rated frequency.
 
·         Transformer Losses
·         Copper Losses
These losses occur due to the finite resistance of the wire of the windings. When current flows through the windings, power = I2R dissipates in the form of heat and are treated as winding losses or I2R losses or copper losses.
·         Hysteresis Losses
When alternating current reverses, once during each cycle, tiny magnetic domains are reversed and these physical changes in the core consume some amount of energy. These losses are referred to as hysteresis losses. 
·         Eddy Current Losses
With iron core, varying primary current sets up electromagnetic field in the secondary and also sets up EMF in the core, causing losses referred to as eddy current losses. These currents in the core oppose magnetic field changes in the core and hence must be kept very small.
 

 


Filed Under: Recent Articles

 

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • PS2 Keyboard To Store Text In SD Card Using Arduino Circuit Setup On Breadboard
    How To Use PS2 Keyboard To Store Text In SD Card Using Arduino- (Part 42/49)
  • Wireless Path Tracking System Using Mouse, XBee And Arduino Circuit Setup On Breadboard
    How To Make A Wireless Path Tracking System Using Mouse, XBee And Arduino- (Part 43/49)
  • How to Make a Wireless Keyboard Using Xbee with Arduino- (Part 44/49)
  • Making Phone Call From GSM Module Using Arduino Circuit Setup On Breadboard
    How to Make Phonecall From GSM Module Using Arduino- (Part 45/49)
  • How to Make a Call using Keyboard, GSM Module and Arduino
    How To Make A Call Using Keyboard, GSM Module And Arduino- (Part 46/49)
  • Receiving SMS Using GSM Module With Arduino Prototype
    How to Receive SMS Using GSM Module with Arduino- (Part 47/49)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What is a low power design?
  • Renesas partners with Tata to accelerate progress in advanced electronics
  • STMicroelectronics’ new touchscreen controller for smartphones enables longer runtime
  • Samsung unveils ISOCELL image sensor with industry’s smallest 0.56μm pixel
  • Renesas and Cyberon to deliver integrated voice-user interface solutions

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • Code Optimization
  • Natural Convection Heatsink for 80W power dissipation?
  • Code Optimization
  • Natural Convection Heatsink for 80W power dissipation?
  • Help identifying drop in ssignal

RSS Electro-Tech-Online.com Discussions

  • intro to PI
  • Lighting a .010 green fiber optic with led
  • Bridge purpose in connecting the two functional circuit
  • ICM7555 IC duty cycle limit at high frequency?
  • How to quickly estimate lead acid battery capacity ?
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering