Engineers Garage

  • Electronic Projects & Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe

Understanding The Engineering Of Implantable Devices In Human Brain

By Shreepanjali Mod May 20, 2016

Engineering might be a tricky thing, but it isn’t brain surgery exactly. However, the gap between the two fields minimized a bit when a joint research was carried between an electrical engineer and pediatric neurosurgeon. The prime goal behind this endeavor is to keep a check human brain cells and stimulate them with a Micro Electro Mechanical System (MEMS) that was implanted right over the inner side of the skull for a longer periods. As per the researchers, it could play a great role in elimination of brain diseases.

If you ask that is it mad science or mad engineering, you can understand it this way that the customary method of measurements and simulations included placement of electrodes. The electrodes used here, generate a specific pattern of electrical pulses that simulate specific portions of brain. This methodology has proven effective in a series of cases, however, the mechanism behind it could not be understood by many. In a number of cases, the doctors reported cases of bleeding, infection, as well as strokes.  

Since, skull is a good insulator it resists passage of electric signal through it. It simply means the surgeons would have to open up the skull for placement of electrodes in the brain. A safer option is to avoid interference with dura that works for keeping the brain safe from infections. It is the part where engineering takes the steering in hand.

As per Srinivas Tadogadapa, a Penn State professor of biomedical and electrical engineering, MEMS sensors and actuators can be used for recording and stimulating brain activities with the help of non-contact techniques. His team has been working under his leadership for creation of tiny coils that are capable of delivering localized stimulation for single cells. In his words, “usually what people do to stimulate neurons is to have very big coils that go outside the head. They’re not implantable. They’re abour the size of your fist, so you have to go in to a lab for the treatment, which is called tanscranial magnetic stimulation (TMS).

As per Freeman, “These large magnets activate a relatively large part of the brain. You can’t get single neuron specificity. We are experimenting and simulating microcoils in different shapes and sizes, the smallest so far being about 500 microns in diameter (about half the size of a grain of salt). We use microglass structures and pattern 3D copper coils on them.”

At present, there are very few devices that are sensitive enough for detecting magnetic waves coming from human brain. However, these are not very simple in nature in terms of implementation for any outpatient program. These equipment need to be as cool as liquid helium temperature under a sunper-conducting quantum interference device (SQUID) while the other one need to be heated up to 180C in order to vaporize metals within an atomic magnetometer. If an implantable sensor has to recognize brain signals, the Earth’s magnetic field’s noise needs to be minimized. As per Srinivas, passive and active circuits on a CMOS microchip needs to be built that will easily get this cancellation done through a feedback loop. The microchip will produce an on-board magnetic field in the MEMS which will compensate for several other magnetic fields within the patient’s environment.  


Filed Under: News

 

Next Article

← Previous Article
Next Article →

Questions related to this article?
👉Ask and discuss on EDAboard.com and Electro-Tech-Online.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE Learning Center

EE Learning Center
“engineers
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


RSS EDABOARD.com Discussions

  • BF999 Input and output impedance
  • Control for DC motor
  • Industrial Relay Board Design for Motorcycle Use
  • Sendust vs Ferrite for SMPS
  • On/Off Slide Switch Reassembly Help

RSS Electro-Tech-Online.com Discussions

  • Wierd makita battery
  • More fun with ws2812 this time XC8 and CLC
  • I Wanna build a robot
  • using a RTC in SF basic
  • Is AI making embedded software developers more productive?

Featured – LoRa/LoRaWan Series

  • What is the LoRaWAN network and how does it work?
  • Understanding LoRa architecture: nodes, gateways, and servers
  • Revolutionizing RF: LoRa applications and advantages
  • How to build a LoRa gateway using Raspberry Pi
  • How LoRa enables long-range communication
  • How communication works between two LoRa end-node devices

Recent Articles

  • STMicroelectronics unveils SoC based on secure MCU
  • Nexperia’s 48 V ESD diodes support higher data rates with ultra-low capacitance design
  • Taoglas releases Patriot antenna with 18 integrated elements covering 600 to 6000 MHz
  • Amphenol RF introduces SMPM to SMPM assemblies on RG-178 cable
  • Infineon launches 3D magnetic sensors with ±50 mT to ±160 mT measurement ranges

EE ENGINEERING TRAINING DAYS

engineering

Submit a Guest Post

submit a guest post
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • Battery Power Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • EV Engineering
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • Subscribe to our newsletter
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search Engineers Garage

  • Electronic Projects & Tutorials
    • Electronic Projects
      • Arduino Projects
      • AVR
      • Raspberry pi
      • ESP8266
      • BeagleBone
      • 8051 Microcontroller
      • ARM
      • PIC Microcontroller
      • STM32
    • Tutorials
      • Audio Electronics
      • Battery Management
      • Brainwave
      • Electric Vehicles
      • EMI/EMC/RFI
      • Hardware Filters
      • IoT tutorials
      • Power Tutorials
      • Python
      • Sensors
      • USB
      • VHDL
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Product News
    • Business News
    • Company/Start-up News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • DigiKey Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • Learn
    • eBooks/Tech Tips
    • Design Guides
    • Learning Center
    • Tech Toolboxes
    • Webinars & Digital Events
  • Resources
    • Digital Issues
    • EE Training Days
    • LEAP Awards
    • Podcasts
    • Webinars / Digital Events
    • White Papers
    • Engineering Diversity & Inclusion
    • DesignFast
  • Guest Post Guidelines
  • Advertise
  • Subscribe