FREIA Report 2015/04

A FRI?lb_’ June 9, 2015

UPPSALA
UNIVERSITET

Department of Physics and Astronomy
Uppsala University

Measuring mechanical vibrations
using an Arduino as a slave I/0O to an
EPICS control system

Adam Hjort & Mans Holmberg

Uppsala University, Uppsala,
Sweden

Department of

Physics and Astronomy
Uppsala University
Box 516

SE-75120 Uppsala

Sweden Papers in the FREIA Report Series are published on internet in PDF format.
Download from http://uu.diva-portal.org

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

Measuring mechanical vibrations using an Arduino
as a slave 1/O to an EPICS control system

ApAM HjoRT & MANS HOLMBERG

Supervisor: VOLKER ZIEMANN & KONRAD GAJEWSKI

Department of Physics and Astronomy
Uppsala Universitet

Abstract

In this study we have assembled hardware and software to be used for measuring of mechanical vibrations
in the FREIA-laboratory at Uppsala University. We have utilized an Arduino microcontroller as a slave
1/O and equipped it with dual accelerometers to be used for vibration measurements and a serial adapter
which was used to connect the hardware to an EPICS IOC for analysis. Data from the two accelerometers
have then been cross correlated in order to find a transfer function. Our results where in good agreement

with theory.

1 Introduction

It is of utmost importance when designing
physical experiments that one takes into ac-
count the mechanical vibrations that may oc-
cur and affect the results. There are several
ways to measure mechanical vibrations and in
this study we look closer on how to measure
them using an MEMS-based accelerometer [3].
By using two accelerometers we can see how
vibrations transfers from one point to another
and thereby gain some information into the
characteristics of the medium the vibrations
propagated through. To provide the accelerom-
eters with power and collect the waveforms,
an Arduino microcontroller is being used. The
Arduino functions as a slave IO and can be con-
nected to either MATLAB or an EPICS control
system. During hardware testing a speaker was
used to generate desired sine waves, seen in fig-
ure 6. Since this speaker propagates the sound
directly into the material it is being placed on,
it proved excellent as a frequency test device
for the accelerometers. As an real world exper-
iment, we measured the transfer function for a
vacuum pump at the FREIA-laboratory.

2 Hardware

Figure 1: The Arduino Uno rev. 3

2.1 Arduino

Arduino is an open source microcontroller that
has become very popular amongst students,
hobbyists as well as with professionals. It has
a very active community and the low cost of
purchase makes it an excellent tool to quickly
test and deploy ideas. We have chosen to work
with the reference model Arduino Uno rev. 3
that can be seen in figure 1. It measures 68.6
x 53.4 mm and weights 25 g. It is based on
the ATmega328 8-bit microcontroller. It has a

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

clock frequency of 16 MHz and a 32 KB flash
memory. It operates at 5 V and can be pow-
ered over USB or an external power supply. On
the board there are 6 analog pins and a total
of 14 digital I/O Pins and 6 of these provide
PWM output. There are also pins for power
management [7].

The analog pins which are the ones we mostly
work with in this project has a resolution of
10 bits meaning they can handle 1024 different
values. This is usually done by having each
value correspond to a voltage between ground
and 5 V, however this can be changed by using
the AREF pin (analog reference pin).

For communication with the Arduino UART
TTL (5V) serial communication is used. The
digital pins 0 (RX) and 1 (TX) can also be used
to send and receive serial data. In the IDE there
is a built-in serial monitor that can be used to
send and receive information. When connected
over USB to a computer the Arduino shows
up as a virtual COM-port and any software
capable of serial communication can be used.

2.2 Accelerometer

To measure frequencies we use an accelerome-
ter similar to the ones you find in smartphones.
The accelerometer measures as the name hints
the acceleration that it being is subjected to.
The model we have used is mounted on a
breakout board from SparkFun and use the
ADXL335 3-axis accelerometer from Analog
Devices [1]. It measures +3 g in three orthogo-
nal axis labeled the X, Y and Z direction. It can
read in the range of 0.5 Hz to 1600 Hz for the
X and Y axis while the Z axis has a range of 0.5
Hz to 550 Hz. However the SparkFun model
comes mounted with 0.1 #F capacitors that acts
as a low-pass filter and limits the lower band-
width of each axis to 50Hz.

GEEIXAQV

oF
-0,

Figure 2: The accelerometer breakout board with the
ADXL335

To operate the accelerometer it needs between
1.8 V to 3.6 V so we can’t use the 5 V output
on the Arduino and have to use the 3 V. This
also means that simply plugging one of the
axis into one of the Arduinos analog input
pins will lead to complications since it expects
a maximum value to be 5 V. To solve this we
connect the supply voltage to the AREF pin
on the Arduino as well as to the accelerometer
and in the software tell the Arduino to use this
voltage as a reference instead of the default 5 V.

The ADXL335 is a so called MEMS (Micro-
Electro Mechanical System) accelerometer. The
sensor in the ADXL335 is a polysilicon surface-
micromachined sensor that is built on a silicon
wafer. In the sensor there is a proof mass
called a seismic mass that is tethered to de-
flectable plates. When subjected to acceleration
the plates are deflected by the mass and this
deflection is measured by a differential ca-
pacitor. The differential capacitor is made
of independently fixed plates and the plates
that are connected to the seismic mass. The
fixed plates are driven by 180° out of phase
square waves and when the plates are deflected
the differential capacitor gets unbalanced and
gives an output signal of a square wave whose
amplitude is proportional to the acceleration.

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

By using demodulation techniques that are
sensitive to the phase-magnitude and direction
of the acceleration can be determined. The
signal is then amplified and taken through a 32
kQ) resistor and now one signal for each axis is
available. Each signal is then taken through a
0.1 uF capacitor that as was mentioned earlier
acts as a low-pass filter. The ADXL335 uses
one structure for the X, Y and Z axis which
gives the axis high orthogonality that in turn
leads to little cross-axis sensitivity [9] [2].

2.3 Serial adapter

To be able to integrate the Arduino into the
EPICS environment used at FREIA it needs to
be connected to a serial device server using a
D-sub 9 connector. The serial device server in
turn gives the device an IP adress and makes
it accessible over the network. The Arduinos
digital pin 0 and 1 are by default used as
RX (receive) and TX (transmit) but this does
not mean that one can simply attach D-sub 9
connector and get a working connection. The
reason for this is that the Arduino communi-
cates with the UART (Universal asynchronous
receiver /transmitter) protocol that sends data
with TTL (Transistor—-transistor logic) voltage
levels that are in the interval of 0 V to 5 V
while the serial device server uses RS-232 that
uses -15 V to -3 V for 0 and 3 V to 15 V for
1. communication. The data sent from UART
can however be converted to work with RS232
devices by feeding the signal through an inte-
grated circuit named MAX232. The MAX232
is a dual driver/receiver and works by chang-
ing the outgoing voltage to be in the R5232
compatible interval of approximatively £ 7.5
V and the incoming voltage is reduced to be
between 0 V to 5 V [4].

For a complete view of all hardware used
and how to connect it please see figure 11 in
Appendix 7.1.

3 Software

3.1 Arduino

The Arduino microcontroller is programed us-
ing the Arduino language, which is based on
C/C++, and comes with a user-friendly in-
tegrated development environment (IDE) [8].
The user only needs to define two functions,
to make an executable program: a setup() and
loop() function. The setup() function is only ex-
ecuted once, and is used to initialize variables,
pin modes etc. The loop() function is essen-
tially a infinite loop that is called repeatedly
until the device is turned off, this is where your
code is implemented. These types of programs
are called cyclic executive programs.

ArduinoSlave

1
2 // Arduino Slave fj
37/

4 // Author
57/

6 // Date

7 // Version

Adam Hjort, Mans Holmberg
2015-03-11 00:00
1.0

8 //
9 // See ReadMe.txt for references
10 //

12 // Include libraries
13 #include <MsTimer2.h>

16 // Define variables and constants

17 const int NUM_ANALOG = 6; // Total number of analog pins available

18 const int NUM_DIGITAL = 14; // Total number of digital pins available

19 const int BUFFER = 512; // Buffer size

20 int analogDataArray[BUFFER]; // Array to store waveform

21 int analogPinl;

22 int analogPin2;

23 int count = @;

24 float in, out; A
25 long period = 1; // Period of interupt (maximum period is 2.15 billion secor/y
T pp— et e

Sketch uses 10,658 bytes (33%) of program storage space. Maximum is 32,256

bytes.
Global variables use 1,412 bytes (68%) of dynamic memory, leaving 636 bytes
for local variables. Maximum is 2,048 bytes.

39 Arduino Uno on /dev/tty.usbmodem1421

Figure 3: The Arduino IDE.

While one can create a wide variety of
programs using only these two functions, the
loop() function is not ideal for precision high
speed applications. This is because it runs
continuously, without the use of a timer [8]. In-
stead, we will be using interrupts, to allow for
predictable timing, which is essential to high
speed data collection. The interrupts are imple-
mented using the library MsTimer2 [15]. The

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

library MsTimer2 combines both ease of use
and good time resolution (1 ms). The events
that triggers the interrupts are internal timer
overflows. Each time a timer overflow, a chosen
function is called and executed, in our case this
will be a function that reads an analog pin (or
two simultaneously). The maximum frequency
of the interrupts is 1 kHz and is determined
by the time resolution of MsTimer2, and hence
limits the speed at which we can sample data.

Listing 1: Reading analog waveform

// Reads 512 values of analog pin O every
// 1 ms using MsTimer2
#include <MsTimer2.h>

const int buffer = 512; // Buffer size
int analogDataArray[buffer];

int count = 0;

int analogPin = 0;

int period = 1; // Period

void getWaveform() {

analogDataArray[count] =
analogRead (analogPin) ;

count++;
if (count >= buffer)
{
MsTimer2: :stop();
count = 0;

}

void setup() {
analogReference (EXTERNAL) ;
MsTimer2::set(period, getWaveform);
MsTimer2::start();

}

void loop() {
}

To read the voltage from an analog pin onboard

the Arduino, we use the function analogRead().

The analog to digital converter (ADC) will
turn the voltage into an digital signal, ranging
from 0-1023, where the reference voltage (value

1023) is set by the function analogReference().

Because the ADXL335 accelerometer operates
using 3.3 V, the function analogReference() will

be set to EXTERNAL, which indicates that an
reference voltage will be applied to the AREF
pin. The time used to read an analog input
using analogRead() is about 100 ys, therefore
it does not limit the frequency of which we can
sample [8].

In order to establish serial communication
between the Arduino slave and EPICS, we
need call the begin() method of the class Serial.
The argument of begin() is the baud rate of the
communication, which will be set to 115200
Bd. Data will be sent and received as human-
readable ASCII text, with the methods print()
and read(). Listing 2 illustrates the simple code
needed to establish serial communication.

Listing 2: Exemple showing serial communication

void setup() {
Serial.begin(115200);
}

void loop() {
Serial.println("Hello World");

}

To program a useful Arduino slave 1O that
will be able to respond and perform tasks upon
different commands sent by the EPICS con-
trol system, we will use a switch statement.
First we have to read the command sent by
EPICS. This can by done by scanning the in-
coming characters until the terminator charac-
ter is reached, which we have set to newline,
shown in Listing 3.

Listing 3: Switch statement, reading serial input

String input;

void setup() {
Serial.begin(115200);
}

void loop() {
while (Serial.available() > 0)
{
char lastRecived = Serial.read();
input += lastRecived;
if (lastRecived == ’\n’)
{

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

switch (input[0]) {
case W’:
MsTimer2: :set(period,
getWaveform) ;

MsTimer2::start();
break;
default:
Serial.println("Error");
break;

¥

input = ""; // Clear recieved buffer.

}
}
}

We use a buffer of 512 elements (limited by the
memory of the Arduino) to temporarily store
the waveforms on the Arduino, before the data
is sent to EPICS or MATLAB [7]. This method
was not limited by the time delay introduced
by constantly sending a command and receiv-
ing one data point at a time, which was our
first approach.

Appart from acquiring analog values, we also
implemented digital I/O. The represetive com-
mands are detailed in the appendix 7.2.

3.2 MATLAB

MATLARB is a numerical computing environ-
ment that is built around an easy scripting lan-
guage, which makes MATLAB perfect for quick
testing and data analysis. First, we initialized
the serial communication between MATLAB
and the Arduino slave, with the native func-
tion serial (). Using this function, we created
a serial object and set the parameters DataBits
= 8, StopBits = 1, BaudRate = 115200.

serialObj = serial(comPort);
set(serialObj, ’DataBits’, 8);
set(serialObj, ’StopBits’, 1);
set(serialObj, ’BaudRate’, 115200);

Then we implemented our protocol, see Ap-
pendix 7.2, into different functions that han-

dled the serial communication. Below is the
function readWaveform() that reads a wave-
form from an analog channel on the Arduino.

function waveform = ...
readWaveform(serialObj, analogPin)

output = [’W’, num2str(analogPin), ’7’];

fprintf(serialObj, output);

input = strsplit(fscanf(serialObj,...
Yhe’)y 7)

if strcmp(output(l:end-1),...

cell2mat (input(1)))

waveform = str2double(input(2:end));
else

error (’Error’);
end

end

625
620 -
615
610

o
(&)
T

Amplitude
D D
o
o

595
590
585

580 L 1 1 I L]
0 100 200 300 400 500
Frequency [Hz]

Figure 4: Waveform of a 60 Hz signal.

With only this simple code we are now able
to perform tests and evaluate the performance
of the ADXL335 accelerometer. Figure 4 shows
the raw waveform obtained by the accelerome-
ter placed near the Adin tone generator playing
a 60 Hz sine wave. The sine wave was gener-
ated using onlinetonegenerator.com [14]. The
collected waveform is then transformed from
the time domain into the frequency domain,
using fast fourier transform (FFT) [10], which
is shown in figure 5. The 60 Hz signal is clearly
distinguished from the background noise.

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

Amplitude

0 100 200 300 400 500
Frequency [Hz]

Figure 5: Frequency domain of the waveform in
figure 4. Note the logarithmic scale.

To test for the frequency response of the
ADXL355, we generated a linear chirp from
100 Hz to 250 Hz with the Adin tone generator
and collected the data over a period of 15 min
[11]. The response is illustrated in figure 7. All
lines with a positive slope is harmonics or the
fundamental. The other lines with negative
slope are Nyquist reflections.

Figure 6: The Adin KKBT speaker which has been
used as a tone generator during the experiments.

o o
o [}
Relative amplitude

Frequency response [Hz]
o
=

100 125 150 175 200 225 250
Frequency [Hz]

Figure 7: The frequency response of a 100 Hz to
250 Hz chirp waveform. The colormap represents
the relative amplitude.

3.3 EPICS

EPICS (Experimental Physics and Industrial
Control System) is an open source software
environment for development and manage-
ment of control systems used globally in small
and large scale projects [6]. EPICS is available
for Windows and Linux and in this project
we used Scientific Linux 6 as operating sys-
tem. The EPICS version used is the standalone
version CODAC Core System v4.1.0 that is
distributed by the ITER Organization. EPICS
utilizes Client/Server and Publish/Subscribe
techniques to handle communications. In
an EPICS environment a server is called In-
put/Output Controller and is abbreviated I0C.
To an IOC multiple sensors and modules can
be attached for measuring and controlling the
system. Through the Channel Access (CA)
network protocol other computers can interact
with the IOCs and read data and send com-
mands to them. EPICS is very scalable and a
system can consist of a single IOC for small
projects to thousands of IOCs for more massive
projects [6].

On an IOC a protocol file is stored that tells
how the communication with an attached de-
vice should be handle. This is done by defining
commands in the file that tells EPICS what data
to send and what to expect in return. There

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

is also a database file, where the records are
defined. A record tells what commands will
be available through the CA network. There
are many different ways records and protocols
can look like and we will show an example
of how these can be structured to work with
each other. The example shows how we mea-
sure a single analog reading from an Arduino
that has been loaded with our serial protocol.
When requesting a single analog read from pin
0 the user should send 407 to the Arduino.
If the value on the pin at the moment is 496
the output will be A0 496. We will not cover
how to install EPICS and create an application
since there is plenty of guides already available
online on that topic [5].

There are two files that needs to be config-
ured before we can start making our record. In
the file userPreDriverConf . cmd we configure
how to connect to the Arduino which we have
named to be ARDO:

drvAsynIPPortConfigure("ARDO",
"192.168.10.9:4003")

We connect using an IP-adress but other meth-
ods are also possible. All the settings for the
baud rate, stop bits and so on are handled
by the serial switch so this is not something
that needs to be set in this case but for other
methods this can be configured here. In the
file dbToLoad . cmd we specify what database to
load when the IOC starts and what name that
should be assigned to the variables PREFIX and
ARD_PORT:

dbLoadRecords("strdev.db",
"PREFIX=STRDEV, ARD_PORT=ARDO")

In the database file strdev.db we have a record
that looks like this:

record(ai, "$(PREFIX):A0") {
field(DTYP, "stream")
field(INP, "G@accel.proto get_analog(0)
$(ARD_PORT) ")
field(SCAN, ".5 second")

In the first row we state that we want to create
a record by writing record, in the parenthe-
ses that follows afterward we set what type
of record we will be using. In our exam-
ple it says ai meaning it’s an analog input
record. After that we see "$(PREFIX):A0"
and this is the name of the record that will
be used on the CA network. This is the
most conventional way of naming records -
"NameOfDevice:Sensor". Next we see three
rows of fields, a field is where the settings
for the record is made. The first row says DTYP
(which means device type field) and this sets
what kind of device the record is going to be
used with. In our example "stream" means
that we will be using StreamDevice which is
a device support module for EPICS that facil-
itates the use of devices that communicates
using strings [16] [12]. The middle row says
INP which stands for input link, as was said
earlier this is an analog input record so this is
where we specify where the input will come
from. The line "@accel.proto get_analog(0)
$ (ARD_PORT) ") specifies what protocol files to
use, which in this case is @accel.proto and
get_analog what commands to run in the pro-
tocol. The (0) is a variable that can be send
along to the protocol. This means we can use
the same the command in the protocol file for
different inputs. The last field says (SCAN, ".5
second") and tells how and when a record pro-
cesses which in this case is set to fetch a new
value every 0.5 second. The command being
called by the record in the protocol file is looks
like this:

get_analog {
out "A\$17";
in "A\$1 %d";

The first row says get_analog and is the name
of the command that the records use to call it.
Next we see out "A\$1?" and specifies what
command will be sent to the Arduino. The \$1
will be replaced with the variable that was sent
along from the record which means that the
command that is sent in this case will be A07.
The last row in "A$1 %d" tells EPICS what to

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

expect back from the Arduino. The A$1 will of
course once again translate into A0 and the %d
means that there will come a signed decimal
afterwards representing the value of the analog

pin.

Once the protocol and database are prepared
there are several ways to interact with and read
data from the IOC. The most common way is
to create a GUI that displays the information
but the easiest way to see that the application
works is to use caget in the terminal. The fol-
lowing code shows how to start the application
called accel and read data from the record
that we created in the example above:

[User@localhost ~]$
./target/main/scripts/accel-ioc start

Starting I0C accel [0K 1]
[User@localhost ~]$ caget STRDEV:AO
STRDEV: AO 496

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

4 Results

We have shown that our system, hardware
and software, is working as predicted when
subjected to tests with known outcomes. The
next step was to test it on an unknown source,
which we chose to be a running vacuum pump
from Scrollvac. The pump was connected to
the cryostat in the FREIA-laboratory and was
bolted to the concrete floor. To measure the
transmitted frequencies from the pump to the
floor, we placed one accelerometer directly to
the pump and the other on the nearby floor,
illustrated in figure 8. Using MATLAB and
the correlation command, see appendix 7.2, on
the Arduino, we recorded data from both ac-
celerometers simultaneously when the pump
was running. The frequency domain of the
waveforms are presented in figure 9. The trans-
fer function is created by dividing the trans-
formed response waveform by the transformed
source waveform. Figure 10 shows the transfer
function. All frequencies below a value of one
are affected while the frequencies above one
are amplified.

N
SCRoLLyac
SC3p DWAC

Figure 8: One accelerometer mounted with red tape
on a vacuum pump and one with red tape on a metal
cube on the floor

10°

T T
——Accelerometer 1
—— Accelerometer 2

Amplitude
87\)

10!
0 0 100 200 300 400 500

Frequency [Hz]

Figure 9: Data of vibrating vacuum pump from two
accelerometers shown in the frequency domain. One
is located at the base of the pump and the other is
placed directly on the pump. Note the logarithmic
scale.

10"

Response

0 100 200 300 400 500
Frequency [Hz]

Figure 10: The transfer function of the data obtained
in figure 9.

5 Conclusion

We can conclude from our results that it is pos-
sibly to perform reliable data acquisition and
analysis using low-cost and easily available
hardware and software.

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

6 Bibliography

[1] SparkFun Electronics. SparkFun Triple Axis Accelerometer Breakout - ADXL335. https://www.
sparkfun. com/products/9269, 2015. [Accessed 22 May 2015].

[2] Analog Devices Inc. ADXL335. http://www.analog.com/en/products/mems/
mems-accelerometers/adx1335.html, 2015. [Accessed 22 May 2015].

3] Commtest Instruments. How is Vibration Measured? http://reliabilityweb.com/index.
1% y
php/articles/how_is_vibration_measured/, 2006. [Accessed 22 May 2015].

[4] Texas Instruments. MAX232. http://www.ti.com/product/MAX232/description, 2015. [Ac-
cessed 22 May 2015].

[5] Pete Jemian. Constant Lighting with EPICS. http://prjemian.github.io/cmd_response/
epics/index.html, 2014. [Accessed 22 May 2015].

[6] Argonne National Laboratory. Experimental Physics and Industrial Control System. http://se.
mathworks.com/help/matlab/math/fast-fourier-transform-fft.html, 2015. [Accessed
22 May 2015].

[7] Arduino LLC. Arduino Uno. http://www.arduino.cc/en/Main/ArduinoBoardUno, 2015.
[Accessed 22 May 2015].

[8] Arduino LLC. Language Reference. http://www.arduino.cc/en/Reference/HomePage, 2015.
[Accessed 22 May 2015].

[9] Sergey Edward Lyshevski. Nano- and Micro-Electromechanical Systems: Fundamentals of Nano-
and Microengineering. CRC Press, 2005.

[10] MathWorks. Fast Fourier Transform (FFT). http://se.mathworks.com/help/matlab/math/
fast-fourier-transform-fft.html, 2015. [Accessed 22 May 2015].

[11] MathWorks. Spectrogram. http://se.mathworks.com/help/signal/ref/spectrogram.html,
2015. [Accessed 22 May 2015].

[12] W. Eric Norum. How to use StreamDevice and ASYN to create EPICS device support for a simple
serial, GPIB, or network attached device. http://www.aps.anl.gov/epics/modules/soft/asyn/
R4-24/HowToDoSerial/HowToDoSerial_StreamDevice.html. [Accessed 22 May 2015].

[13] Friends of Fritzing foundation. Fritzing. http://fritzing.org/home/, 2015. [Accessed 22
May 2015].

[14] onlinetonegenerator.com. Online Tone Generator. http://onlinetonegenerator.com, 2015.
[Accessed 22 May 2015].

[15] Javier Valencia. MsTimer2 and FlexiTimer2 Libraries. http://www.pjrc.com/teensy/td_libs_
MsTimer2.html, 2015. [Accessed 22 May 2015].

[16] Dirk Zimoch. EPICS StreamDevice. http://epics.web.psi.ch/software/streamdevice/
doc/, 2011. [Accessed 22 May 2015].

10

https://www.sparkfun.com/products/9269
https://www.sparkfun.com/products/9269
http://www.analog.com/en/products/mems/mems-accelerometers/adxl335.html
http://www.analog.com/en/products/mems/mems-accelerometers/adxl335.html
http://reliabilityweb.com/index.php/articles/how_is_vibration_measured/
http://reliabilityweb.com/index.php/articles/how_is_vibration_measured/
http://www.ti.com/product/MAX232/description
http://prjemian.github.io/cmd_response/epics/index.html
http://prjemian.github.io/cmd_response/epics/index.html
http://se.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://se.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://www.arduino.cc/en/Main/ArduinoBoardUno
http://www.arduino.cc/en/Reference/HomePage
http://se.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://se.mathworks.com/help/matlab/math/fast-fourier-transform-fft.html
http://se.mathworks.com/help/signal/ref/spectrogram.html
http://www.aps.anl.gov/epics/modules/soft/asyn/R4-24/HowToDoSerial/HowToDoSerial_StreamDevice.html
http://www.aps.anl.gov/epics/modules/soft/asyn/R4-24/HowToDoSerial/HowToDoSerial_StreamDevice.html
http://fritzing.org/home/
http://onlinetonegenerator.com
http://www.pjrc.com/teensy/td_libs_MsTimer2.html
http://www.pjrc.com/teensy/td_libs_MsTimer2.html
http://epics.web.psi.ch/software/streamdevice/doc/
http://epics.web.psi.ch/software/streamdevice/doc/

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

7 Appendix
7.1 Circuit diagram
o
) (UNO

?)sr ADXL33S

oooooooooooooooooo

Figure 11: Circuit diagram showing all necessary connections for this project. Note that only the x-axis on
the accelerometers are connected. This diagram was created using the software Fritzing [13].

11

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

7.2 Command List

Here is a full list of all the supported commands used in our serial protocol.

Command Response Description

AX? AX N Get one single value from an analog channel.

WX? WX NNUN... Returns the waveform from an analog channel.

CxXy? CXY ¥ NV V... Returns two waveforms from different analog chan-
nels (measured at the same time).

p? PN Returns the sampling period.

PN PN Sets the sampling period.

M? M NNNNNNNNNNNNNN | Returns the IO mask

MNNNNNNNNNNNNNN | MNNNNNNNNNNNNNN Sets the IO mask

MXN MXN Set the value of a specific digital pin.

DX? DX N Returns the value of a digital channel.

DXN DXN Sets the value of a digital channel.

Q7 Q NNNNNNNNNNNNNN | Returns all the digital channel values.

v? Vs Returns the software version.

? S Returns some information about the device.

The terms X, Y denotes different pins onboard the Arduino (analog and digital), # is an integer
corresponding to the data given by the command and S is a string. Note that every command
that asks for a value ¥ ends with a question mark.

7.3 MATLAB code

function serialObj = setupSerial(comPort, baudRate)
%% Initializes serial port communication between Arduino and MATLAB

serialObj = serial(comPort);
set(serialObj, ’DataBits’,8);
set(serialObj, ’StopBits’,1);
set(serialObj, ’BaudRate’,baudRate);
set(serialObj, ’Parity’,’none’);
set(serialObj, ’InputBufferSize’, 4096);
end

function waveform = readWaveform(serialObj, analogPin)

%% Read single waveform from analog pin on the Arduiono

if mod(analogPin, 1) > le-6
error(’Analog pin must be an integer.’);
return

end

if analogPin < O || analogPin > 5
error(’Analog pin must have a value from 0-5.7);
return

end

12

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

output = [’W’, num2str(analogPin), ’7°];
fprintf(serialObj, output);
input = strsplit(fscanf(serialObj, ’%c’), 7 ’);

if strcmp(output(l:end-1), cell2mat(input(1)))
waveform = str2double(input(2:end));

else
error (’Error’);

end

end

function [waveforml, waveform2] = readTwoWaveforms(serialObj, analogPinl, analogPin2)

%% Read waveforms from two analog pins on the Arduiono simultaneously

if mod(analogPinl, 1) > le-6 || mod(analogPin2, 1) > le-6
error(’Analog pins must be an integer.’);

return

end

if analogPinl < 0 || analogPinl > 5 || analogPin2 < O || analogPin2 > 5
error(’Analog pins must have a value from 0-5.7);
return

end

output = [’C’, num2str(analogPinl), num2str(analogPin2), ’7°];
fprintf(serialObj, output);
input = strsplit(fscanf(seriallObj, ’%c’), ’ ’);

if strcmp(output(l:end-1), cell2mat(input(1)))
waveforml = str2double(input(2:end/2+0.5));
waveform2 = str2double(input(end/2+1.5:end));

else
error (’Error’);

end

end

function [] = setIOMask(serialObj, mask)
%% Sets the I0 mask on the Arduino

if length(mask) ~= 14
error(’I0 mask must be of length 14°);
return

end

if any(mask > 1) || any(mask < 0) || any(mod(mask, 1) > 0)
error(’I0 mask must only contain ones or zeros’);
return

end

output = regexprep(mat2str(mask), ’[“\wl’, ’7);
fprintf(serialObj, [’M’, output]);

13

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

fscanf (serialObj, ’%s’)
end

function [] = setDigitalPin(serialObj, digitalPin, mode)
%% Sets the mode of a digital pin

if digitalPin < 0 || digitalPin > 13
error(’Analog pin must have a value from 0-5’);

return

end

if mode < 0 || mode > 1 || mod(mode, 1) > 0O
error(’Mode must be ether 0 or 1%);
return

end

num = ’7;

if digitalPin < 10

num = [’0’, num2str(digitalPin)];
else

num = num2str(digitalPin);
end

fprintf(serialObj, [’D’, num, num2str(mode)]);
fscanf (serialObj, ’%s’);
end

7.4 Arduino code

//

// Arduino Slave

//

// Author Adam Hjort, Mans Holmberg
//

// Date 2015-03-11 00:00

// Version 1.0

//

// See ReadMe.txt for references
//

// Include libraries
#include <MsTimer2.h>

// Define variables and constants

const int NUM_ANALOG = 6; // Total number of analog pins available
const int NUM_DIGITAL = 14; // Total number of digital pins available
const int BUFFER = 512; // Buffer size

14

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

int analogDataArray[BUFFER]; // Array to store waveform

int analogPinil;

int analogPin2;

int count = O;

float in, out;

long period = 1; // Period of interupt (maximum period is 2.15 billion seconds)

boolean digitalPinMask[14] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; // An array that
holds the current I0 modes for all digital pins

String input; // A string containing the input from the serial communication

String ver = "1.0"; // Software version

// getOneWaveform
//
// Brief Reads "BUFFER" number of value of one analog pin at accurate time periods.
//
void getOneWaveform() {
analogDataArray[count] = analogRead(analogPinl);
count++;
if (count >= BUFFER)
{
MsTimer2::stop();
count = 0;

}
}
void SinSerial() {
if ((input.charAt(2) == °7’) && (input.charAt(3) == ’\n’))
{
for (in = 0; in < 6.283; in = in + 0.001)
{

out = sin(in) * 127.5 + 127.5;
Serial.println(out);

}
Serial.print(’\n’);
}
else
{
Serial.println("Error");
}

}

// getTwoWaveform

//

// Brief Reads "BUFFER"/2 number of value of two analog pins simultaneously at accurate

time periods.

//

void getTwoWaveform() {
analogDataArray[count] = analogRead(analogPinl);
count++;
analogDataArray[count] = analogRead(analogPin2);
count++;
if (count >= BUFFER)

15

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

{
MsTimer2: :stop();
count = 0;

// analogSerial
//
// Brief Returns a single value from chosen analog channel.
//
void analogSerial() {
if ((input.charAt(1) > ’/’) && (input.charAt(1) < NUM_ANALQOG + ’07)
&& (input.charAt(2) == ’7’) && (input.charAt(3) == ’\n’))

input.remove(2, 2);
Serial.print(input);
Serial.print(" ");
Serial.print(analogRead(input.charAt(1) - ’07));
Serial.print("\n");

}

else

{
Serial.println("Error");

}

}

// waveformSerial
//
// Brief Retunrs a waveform from chosen analog channel.
//
void waveformSerial() {
if ((input.charAt(1) > ’/’) && (input.charAt(1) < NUM_ANALQOG + ’07)
&& (input.charAt(2) == ’7’) && (input.charAt(3) == ’\n’))

analogPinl = input.charAt(1) - ’07;
MsTimer2: :set(period, getOneWaveform);
MsTimer2: :start();
delay (BUFFER * period) ;
input.remove (2, 2);
Serial.print (input) ;
for (int i = 0; i < BUFFER; i++)
{
Serial.print(" ");
Serial.print(analogDataArray[i]);
analogDataArray[i] = 0;

}
Serial.print(’\n’);
}
else
{
Serial.println("Error");
}

16

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

// correlationSerial

!/

// Brief Retunrs two waveforms from chosen analog channels, that was capturet
simultaneously.

!/

void correlationSerial() {

if ((input.charAt(1) > ’/’) && (input.charAt(1) < NUM_ANALQOG + ’07)

&& (input.charAt(2) > ’/’) && (input.charAt(2) < NUM_ANALQOG + ’07)
&& (input.charAt(1) !'= input.charAt(2))
&& (input.charAt(3) == ’7’) && (input.charAt(4) == ’\n’))

analogPinl = input.charAt(1) - ’07;
analogPin2 = input.charAt(2) - ’07;
MsTimer2::set(period, getTwoWaveform);
MsTimer2::start();

delay (BUFFER * period);
input.remove(3, 2);

Serial.print (input) ;

for (int i = 0; i < BUFFER; i += 2)

{
Serial.print(" ");
Serial.print(analogDataArray[i]);
analogDataArray[i] = 0;
}
for (int i = 1; i < BUFFER; i += 2)
{
Serial.print(" ");
Serial.print(analogDataArray([i]);
analogDataArray[i] = 0;
}
Serial.print(’\n’);
}
else
{
Serial.println("Error");
}

}

// periodSerial
!/
// Brief Can be used to either get or set the sampling period.
!/
void periodSerial() {
// Returns the sampling period
int inputLength = input.length();
if ((input.charAt(1) == ’7’) && (input.charAt(2) == ’\n’))
{
input.remove(l, 2);
Serial.print(input) ;
Serial.print(" ");

17

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

Serial.println(period) ;
}
// Sets the sampling period
else if (inputLength > 2 && (input.charAt(inputLength - 1) == ’\n’))
{
input.remove(0, 1);
boolean isCorrect = true;
for (int 1 = 0; i < inputLength - 2; i++)
{
if (input.charAt(i) < ’/’ || input.charAt(i) > ’:7)
{
isCorrect = false;
break;
}
}
if (isCorrect)
{
long tempPeriod = input.toInt();
if (tempPeriod > 0)
{
Serial.print ("P");
Serial.println(tempPeriod);
period = tempPeriod;
}
else
{
Serial.println("Error");
}
}
else
{
Serial.println("Error");
}
}
else
{
Serial.println("Error");
}
}

// maskSerial
!/
// Brief Can be used to either get or set the IO mask of the digital pins (1 = input 0 =
output) .
//
void maskSerial() {
// Returns the IO mask for the digital pins
int inputLength = input.length();
if ((input.charAt(1) == ’7’) && (input.charAt(2) == ’\n’))
{
input.remove(l, 2);
Serial.print(input) ;

18

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

Serial.print(" ");
for (int i = 1; i < NUM_DIGITAL + 1; i++)
{
if (digitalPinMask[i] == 0)
{
Serial.print("0");
¥
else
{
Serial.print("1");
}
}
Serial.print(’\n’);
}
// Sets the IO mask for the digital pins
else if (input.charAt(NUM_DIGITAL + 1) == ’\n’)
{
boolean isCorrect = true;
for (int i = 1; i < NUM_DIGITAL + 1; i++)

{
if ((input.charAt(i) !'= °0’) && (input.charAt(i) !'= ’1°))
{
isCorrect = false;
break;
}
}
if (isCorrect == true)
{
input.remove (NUM_DIGITAL + 1, 1);
for (int i = 0; i < NUM_DIGITAL + 1; i++)
{
digitalPinMask[i] = input.charAt(i) - ’07°;
pinMode(i, !digitalPinMask[i]);
}
Serial.println(input) ;
}
else
{
Serial.println("Error");
}
}

// Set the I0 status of a specific digital pin
else if ((inputLength > 3) && (inputLength < 6) && (input.charAt(inputLength - 1) ==
\n’))

input.remove (0, 1);

input.remove (inputLength - 1, 1);

boolean isCorrect = true;

for (int i = 0; i < inputLength - 2; i++)

{
if (input.charAt(i) < ’/’ || input.charAt(i) > ’:7)
{

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

isCorrect = false;
break;
}
}
int value = input.charAt(inputLength - 3) - ’07;
input.remove (inputLength - 3, 1);
if (isCorrect)
{
int digitalPin = input.toInt();
if ((digitalPin >= 0) && (digitalPin < NUM_DIGITAL) && (value == 0 || value == 1))
{
Serial.print("M");
Serial.print(digitalPin);
Serial.println(value);
digitalPinMask[digitalPin + 1] = value;
pinMode (digitalPin, !value);
}
else
{
Serial.println("Error");
}
}
else
{
Serial.println("Error");
}
}
else
{
Serial.println("Error");
}
}

// digitalSerial
//
// Brief Can be used to either get or set the value of a digital pin (1 = low O = high).
//
void digitalSerial() {
// Sets the value of a specific digital pin
int inputLength = input.length();
if ((inputLength > 3) && (inputLength < 6) && (input.charAt(inputLength - 1) == ’\n’)
&& (input.charAt(inputLength - 2) != ’77))

input.remove(0, 1);
input.remove (inputLength - 1, 1);
boolean isCorrect = true;
for (int i = 0; i < inputLength - 2; i++)
{
if (input.charAt(i) < ’/’ || input.charAt(i) > ’:7)
{
isCorrect = false;
break;

20

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

}
}
int value = input.charAt(inputLength - 3) - ’07;
input.remove (inputLength - 3, 1);
if (isCorrect)

{
int digitalPin = input.toInt();
if ((digitalPin >= 0) && (digitalPin < NUM_DIGITAL) && (value == 0 || value == 1))
{
Serial.print("D");
Serial.print(digitalPin);
Serial.println(value);
digitalWrite(digitalPin, value);
}
else
{
Serial.println("Error");
}
}
else
{
Serial.println("Error");
}
}

// Returns the value of a specific digital pin
else if ((inputLength > 3) && (inputLength < 6) &&
(input.charAt (inputLength - 2) == ’7’) && (input.charAt(inputlength - 1) ==
\n’))

input.remove(0, 1);
input.remove (inputLength - 3, 2);
boolean isCorrect = true;
for (int i = 0; i < inputLength - 3; i++)
{
if (input.charAt(i) < ’/’ || input.charAt(i) > ’:7)
{
isCorrect = false;
break;
}
}
if (isCorrect)
{
int digitalPin = input.toInt();
if ((digitalPin >= 0) && (digitalPin < NUM_DIGITAL))
{
Serial.print("D");
Serial.print(digitalPin);
Serial.print(" ");
Serial.println(digitalRead(digitalPin));
}
else

{

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

Serial.println("Error");
}
}
else
{
Serial.println("Error");
}
}
else
{
Serial.println("Error");
}
}

// getAllDigital
//
// Brief Returns the values of all digital pins (1 = input O = output).
//
void getAllDigital() {
if ((input.charAt(1) == ’7’) && (input.charAt(2) == ’\n’))
{
input.remove (1, 2);
Serial.print (input);
Serial.print(" ");
for (int i = 0; i < NUM_DIGITAL; i++)
{
Serial.print(digitalRead(i));
}
Serial.print(’\n’);
}
else
{
Serial.println("Error");
}
}

// versionSerial
//
// Brief Returns current software version
//
void versionSerial() {
if ((input.charAt(1) == ’7’) && (input.charAt(2) == ’\n’))
{
input.remove(1l, 1);
Serial.print("V ");
Serial.println(ver);
}
else
{
Serial.println("Error");
}
}

22

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

// Setup
//
// Brief Setup
!/
void setup() {
// Setup
bitClear (ADCSRA, ADPSO); // Running with high speed clock (set prescale to 16)
bitClear (ADCSRA, ADPS1);
bitSet (ADCSRA, ADPS2);
Serial.begin(115200); // Sets Serial baud rate
analogReference (EXTERNAL) ; // Configures the reference voltage used for analog input

// Loop
//
// Brief Loop
//
void loop() {
while (Serial.available() > 0)
// Adds input char to the string "input" while there still is characters to read
{
char lastRecived = Serial.read();
input += lastRecived; // Adds last recived char to "input"

if (lastRecived == ’\n’)
// Continue to do stuff if the last character recived was a new line
{
switch (input[0]) {

case ’A’:
analogSerial();
break;

case ’W’:
waveformSerial();
break;

case ’C’:
correlationSerial();
break;

case ’P’:
periodSerial();
break;

case 'M’:
maskSerial();
break;

case ’D’:
digitalSerial();
break;

case ’'Q’:
getAllDigital();
break;

case ’S’:
SinSerial();

Physics Project with a Research Connection 5 hp, 1FA605 e June 2015

break;

case ’V’:
versionSerial();
break;

case ’77:
// Returns some information about this device
Serial.println("Arduino slave");
Serial.print("Version ");
Serial.println(ver);
Serial.println("Uppsala University, Sweden");
Serial.println("Software written by Adam Hjort and Mans Holmberg");

break;
default:
Serial.println("Error");
break;
}
input = ""; // Clear recieved buffer.

24

	Introduction
	Hardware
	Arduino
	Accelerometer
	Serial adapter

	Software
	Arduino
	MATLAB
	EPICS

	Results
	Conclusion
	Bibliography
	Appendix
	Circuit diagram
	Command List
	MATLAB code
	Arduino code

