Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

The Advanced 30kW Three-Phase Vienna PFC From Microsemi Promises Much Better Performance And Ruggedness

By Shreepanjali Mod

Microsemi Corporation, one of the most premium providers of semiconductors solutions just came forth with its new scalable three-phase 30-kW Vienna power factor correction (PFC) topology reference design. What’s special about this design is that it features MOSFETs and Silicon Carbide (SiC) diodes. Microsemi Corporation developed this design by collaborating with North Carolina State University. The new scalable three-phase 30-kW Vienna power factor correction (PFC) topology reference design presents a highly user friendly solution that is perfect for rapid Electric Vehicle (EV0 charging and several other high power industrial and vehicle applications. 
 
Microsemi PFC Vienna
 
Fig.1 : Microsemi PFC Vienna 
(Image Source)
 
The best things about the new scalable three-phase 30-kW Vienna PFC topology reference design is that it will enable the buyers with much more efficient switching, alongwith, higher short-circuit withstand ratings when it makes use of firm’s strongest SiC diodes and MOSFETs. Microsemi plans to showcase the new scalable three-phase 30-kW Vienna power factor correction (PFC) topology reference design at the PMIC Europe 2018 slated to take place from 5-7 June in Nuremberg Germany. 
 
Leon Gross, the business unit manager and vice president of Microsemi’s Discrete and Power Management group, adds that, “As the automotive market transitions toward more hybrid electric vehicle (HEV) and battery electric cars, SiC allows for better efficiency, resulting in better mileage. This continues to drive high demand for these SiC devices in our portfolio, as well as our other high-reliability product offerings. After successfully releasing our SiC MOSFET and diode product portfolio over the past few years, our new three-phase three-switch three-level PFC reference design is a concrete example of how to leverage these parts in demanding applications that showcase its ruggedness, high performance and overall value.”  
 
Microsemi’s new scalable three-phase 30-kW Vienna PFC topology reference design has several design files along with Microsemi’s gen-next SiC diodes as well as MOSFETs which is an open source digital control software as well as a user guide. This topology has an edge over the single phase PFC and 2 level, six-swith boost pulse width modulated rectifier designs.

 


Filed Under: News

 

Questions related to this article?
👉Ask and discuss on Electro-Tech-Online.com and EDAboard.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • Introduction to Brain Waves & its Types (Part 1/13)
  • Understanding NeuroSky EEG Chip in Detail (Part 2/13)
  • Performing Experiments with Brainwaves (Part 3/13)
  • Amplification of EEG Signal and Interfacing with Arduino (Part 4/13)
  • Controlling Led brightness using Meditation and attention level (Part 5/13)
  • Control Motor’s Speed using Meditation and Attention Level of Brain (Part 6/13)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What are the battery-selection criteria for low-power design?
  • Key factors to optimize power consumption in an embedded device
  • EdgeLock A5000 Secure Authenticator
  • How to interface a DS18B20 temperature sensor with MicroPython’s Onewire driver
  • Introduction to Brain Waves & its Types (Part 1/13)

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • simple LSB explanation please
  • Timer MC14541B wrong delay
  • Measure AC current accurateley (100mA to 10A)
  • Avalanche Pulser
  • FPGA Interfacing with ADC AD7606

RSS Electro-Tech-Online.com Discussions

  • bluetooth jammer
  • Disabled son needs advice please
  • DIY bluetooth speaker
  • Someone please explain how this BMS board is supposed to work?
  • HV Diodes
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering