Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Graphene Triggers Quantum Dot’s Potential in Quantum Computing

By Parul Gupta

As it states, if you truly intend to employ quantum dots for quantum computing, you would be lucky setting aside the semiconductor types and transforming to a pure conductor, such as graphene to perform the trick.

Scientists at Technische University Wien (Tu Wein, or the Vienna University of Technology), along with members from the Manchester’s University in the UK and Rehinisch – Westfalische Technische Hochschuke Aachen (RWTH Aachen University), in Germany have able to generate quantum dots out of graphene. And as per the multinational team, such dots provide a bold novel promise for quantum computing. So the novel thing is that scientists identified that quantum dots crafted from graphene possess four quantum states at a certain energy level, unlike the semiconductor quantum dots that possess only two.

graphene-dots

Figure 1: Graphene dots
 

According to experts, these supplementary quantum states could be lucrative to quantum computing that relies on well-regulated coherent collaborations between quantum bits, known as a qubit. A qubit is a coherent superposition of two quantum states. The crucial obstacle towards the realization of a functioning quantum computer is de-coherence that involves the loss of quantum elements because of interactions with the environment. Such interactions collapse the qubit.

“Employing the graphene quantum dots, you could enable sorting two qubits in the four-fold near-degenerate states that would prepare a coherent collaboration between such two qubits much more well-regulated than the links of two-fold degenerate states,” says Libisch.

The key to the novel research was to generate the graphene quantum dots without depriving these four quantum states. In order to generate a quantum dot, you are required to isolate electrons in a tiny slot of material. The convenient technique for performing this is by replacing off small flakes from a sleek layer of substance where the electrons are captures. While such common technique functions well for graphene, it interrupts the symmetry of the 2-D carbon substance at the boundary of the flakes. That delivers quantum dots with just two quantum states.

So, the scientists used graphene flakes; the experts utilized a combination of magnetic and electrical fields to entrap the electrons in graphene. Foremost, a trap is prepared for the electrons on the graphene surface by placing an electronic current that attracts and restores on the lower-energy electrons. Next to this, a magnetic field has placed that forces such trapped electrons into small orbits where they rest.

Conclusion – In such small orbits, the electrons preserves super positions for a lengthy time span, which is a lucrative feature for quantum computers. “Also, Graphene possesses other interesting traits for applications comprising mechanical flexibility and exclusive sleekness that deliberately enable for better storage density,” says Libisch.

 


Filed Under: News

 

Questions related to this article?
👉Ask and discuss on EDAboard.com and Electro-Tech-Online.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • Introduction to Brain Waves & its Types (Part 1/13)
  • Understanding NeuroSky EEG Chip in Detail (Part 2/13)
  • Performing Experiments with Brainwaves (Part 3/13)
  • Amplification of EEG Signal and Interfacing with Arduino (Part 4/13)
  • Controlling Led brightness using Meditation and attention level (Part 5/13)
  • Control Motor’s Speed using Meditation and Attention Level of Brain (Part 6/13)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What are the battery-selection criteria for low-power design?
  • Key factors to optimize power consumption in an embedded device
  • EdgeLock A5000 Secure Authenticator
  • How to interface a DS18B20 temperature sensor with MicroPython’s Onewire driver
  • Introduction to Brain Waves & its Types (Part 1/13)

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • Timer MC14541B wrong delay
  • simple LSB explanation please
  • Pull up via GPIO
  • Avalanche Pulser
  • Measure AC current accurateley (100mA to 10A)

RSS Electro-Tech-Online.com Discussions

  • Need a ducted soldering fan for solder smoke extraction
  • bluetooth jammer
  • Disabled son needs advice please
  • DIY bluetooth speaker
  • Someone please explain how this BMS board is supposed to work?
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering