Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering

Introduced Electronic Nose for Identification of Nerve Gas and Pesticides

By Parul Gupta

To enhance the identification of nerve gas and pesticides in extremely low concentrations, an international group of researchers has created a highly sensitive electronic nose. Such a nose is built with frameworks of metal-organic nature (MOFs) and intends to offer trouble free identification of various types of pesticides across regions. This team of scientists has been led by Rob Ameloot and Ivo Stassen from the Department of Researches in KU Leuven, Belgium. It is the combined efforts of the researchers who have made it possible.

It is the finely-known electronic nose in the shape of a dog’s face that is termed as the breathalyser. The driver can wear it and as the drivers inhale into the unit, a chemical sensor measures the volume of alcohol in their single breath. The chemical reaction obtained is then transformed into an electrical signal enabling individuals and security officers to read the results. Alcohol is convenient to detect, as the chemical reaction is particular and the concentration of the computed gas is deliberately high. But numerous other gases are intricate mixtures of molecules in highly low concentrations. Building such electrical noses to identify them is, therefore, a big challenge.

It is a highly sensitive nose that is created by the scientists from KU Leuven. The nose is crafted with metal-organic structures. “These MOFs are similar to microscopic sponges” describes the postdoctoral scientists Ivo Stassen. “These frames can captivate a big amount of gas into their miniature pores.”

“We crafted an MOF that takes up the phosphonates obtained from nerve gases and pesticides. It implies that you can utilize the nose for finding impressions of chemical weapons like sarin or for identification of the remaining of pesticides in all types of eatables and food items. This MOF is the highly sensitive gas sensor till date for such dangerous substances. Our calculations were performed in collaboration with imec, the Leuven-based research centre for nanotechnology. The absorptions we are dealing with are highly low, parts per billion. It is similar to a drop of water in a big Olympic swimming area – and fragments per trillion.”

The chemical sensors can conveniently be incorporated into the current electrical devices. Added by Professor Rob Ameloot, “You can spread over the MOF as a thin coating over the exterior of, for instance, an electronic circuit. Hence, it is deliberately convenient to furnish a smartphone with a gas sensor for nerve gas and pesticides.”

“Moreover research will enable us to analyse other submissions as well,” says Professor Ameloot. He continues by saying that, “MOFs can calculate greatly low concentrations, so we could utilize them to screen someone’s odour for ailments are related to the breath, like MS in the primary stage or lung cancer. Or we could utilize the signature scent of an item to locate whether food has been infected with pesticides, has gone bad or to differentiate imitation wine from the inventive. Such technology, in other terms, provides an extensive assortment of perspectives.”


Filed Under: News

 

Questions related to this article?
👉Ask and discuss on EDAboard.com and Electro-Tech-Online.com forums.



Tell Us What You Think!! Cancel reply

You must be logged in to post a comment.

HAVE A QUESTION?

Have a technical question about an article or other engineering questions? Check out our engineering forums EDABoard.com and Electro-Tech-Online.com where you can get those questions asked and answered by your peers!


Featured Tutorials

  • Introduction to Brain Waves & its Types (Part 1/13)
  • Understanding NeuroSky EEG Chip in Detail (Part 2/13)
  • Performing Experiments with Brainwaves (Part 3/13)
  • Amplification of EEG Signal and Interfacing with Arduino (Part 4/13)
  • Controlling Led brightness using Meditation and attention level (Part 5/13)
  • Control Motor’s Speed using Meditation and Attention Level of Brain (Part 6/13)

Stay Up To Date

Newsletter Signup

Sign up and receive our weekly newsletter for latest Tech articles, Electronics Projects, Tutorial series and other insightful tech content.

EE Training Center Classrooms

EE Classrooms

Recent Articles

  • What are the battery-selection criteria for low-power design?
  • Key factors to optimize power consumption in an embedded device
  • EdgeLock A5000 Secure Authenticator
  • How to interface a DS18B20 temperature sensor with MicroPython’s Onewire driver
  • Introduction to Brain Waves & its Types (Part 1/13)

Most Popular

5G 555 timer circuit 8051 ai Arduino atmega16 automotive avr bluetooth dc motor display Electronic Part Electronic Parts Fujitsu ic infineontechnologies integratedcircuit Intel IoT ir lcd led maximintegratedproducts microchip microchiptechnology Microchip Technology microcontroller microcontrollers mosfet motor powermanagement Raspberry Pi remote renesaselectronics renesaselectronicscorporation Research samsung semiconductor sensor software STMicroelectronics switch Technology vishayintertechnology wireless

RSS EDABOARD.com Discussions

  • Op amp non inverting amplifier not working
  • Measure AC current accurateley (100mA to 10A)
  • Mosfet SSR triac output shunt circuit design
  • Tessent MBIST for memories with dedicated test clock
  • Very low voltage/power Schmitt trigger?

RSS Electro-Tech-Online.com Discussions

  • Best way to reduce voltage in higher wattage system?
  • surge arresters
  • Someone please explain how this BMS board is supposed to work?
  • Need a ducted soldering fan for solder smoke extraction
  • DIY bluetooth speaker
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Circuit Design
    • Project Videos
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • Electronic Products News
    • DIY Reviews
    • Guest Post
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • White Papers
    • Webinars
  • EE Learning Center
    • Design Guides
      • WiFi & the IOT Design Guide
      • Microcontrollers Design Guide
      • State of the Art Inductors Design Guide
  • Women in Engineering