Engineers Garage

  • Projects and Tutorials
    • Circuit Design
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • EE Design News
    • DIY Reviews
    • Guest Post
    • Sponsored Content
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • Video
    • White Papers
    • Webinars
  • EE Learning Center
  • Women in Engineering

VHDL Tutorial 14: Design 1×8  demultiplexer and 8×1 multiplexer using VHDL

November 22, 2020 By Ashutosh Bhatt

In the previous tutorial VHDL tutorial, we designed 8×3 encoder and 3×8 decoder circuits using VHDL.

(If you are not following this VHDL tutorial series one by one, you are requested to go through all previous tutorials of these series before going ahead in this tutorial)

In this tutorial,

  • We shall write a VHDL program to build 1×8 demultiplexer and 8×1 multiplexer circuits
  • Verify the output waveform of the program (digital circuit) with the truth table of these multiplexer and demultiplexer circuits

1×8 Demultiplexer circuit

VHDL

Truth Table
(Please go through step by step procedure given in VHDL-tutorial 3 to create a project, edit and compile the program, create a waveform file, simulate the program, and generate output waveforms.)
Now we shall write a VHDL program, compile it, simulate it, and get the output in a waveform. Finely, we shall verify that the output waveforms with the given truth table.

I have used the behavioral modeling style to write a VHDL program to build demultiplexer because it will be easier than the dataflow or structural modeling style.

VHDL Program

 (To know more and get more details about VHDL program(s), please go through the first two tutorials, VHDL tutorial 1 and VHDL tutorial 2 of these series.)

Next, compile the above program – create a waveform file with all inputs and outputs listed – apply different input combinations – save the waveform file, and finally, simulate the project. You will get the following result.

Simulation Waveform

As shown in the figure, one can observe that when select lines (S2, S1, S0) are “001”, the input I=0 is available in output O1=0, and when select lines are “101”, the input I=1 is available in output O5 = 1. You may verify other select line combinations with input and output.

Next, let us move on to build an 8×1 multiplexer circuit.

8×1 multiplexer circuit

Truth Table

VHDL program
Simulation waveforms

As shown in the figure, one can see that for select lines (S2, S1, S0) “011” and “100,” the inputs d3=1 and d4=1 are available in output o=1. You may verify other combinations of select lines from the truth table.

In the next tutorial, we shall design RS flip-flop and clocked RS Latch.

Related Articles Read More >

Gate Level Minimization – DE Part 7
Gate Level Implementation – DE Part 8
Introduction to VHDL & Verilog – DE Part 9
Arithmetic Circuits – DE Part 10

Featured Tutorials

  • Gate Level Implementation – DE Part 8
  • Introduction to VHDL & Verilog – DE Part 9
  • Arithmetic Circuits – DE Part 10
  • Logic Gate Implementation of Arithmetic Circuits – DE Part 11
  • Building Code Convertors Using SN-7400 Series ICs – DE Part 12
  • Interfacing stepper motor with 8051(89c51,89c52 ) microcontroller

Stay Up To Date

Newsletter Signup

EE Training Center Classrooms

“ee

“ee

“ee

“ee

“ee

Recent Articles

  • A groundbreaking alternative to DRAM
  • What are the different types of temperature sensors and their applications?
  • Analog Devices and Stripe launching advanced computer science program
  • NXP expands its EdgeVerse portfolio with crossover application processors
  • Mobileye partners with ATS and Lohr to develop autonomous shuttles
...

RSS EDABOARD.com Discussions

  • Understanding of RHCP or LHCP
  • Impedance Maching
  • What is the safe distance for RF antenna under 220KV high voltage equipment?
  • Will this RF power transistor work for RF power amp at 2.4 GHz?
  • Nport instance connection in cadence

RSS Electro-Tech-Online.com Discussions

  • Momentary push button DPDT switch with alternate action
  • Step-down switching regulator with 1MHz PWM. Schematic question.
  • HOW to buy online solar motion detector LED Lights with NO Lumens ratings?
  • Ideas for a power supply?
  • ST7066U 20x4 LCD problems
Engineers Garage
  • Analog IC TIps
  • Connector Tips
  • DesignFast
  • EDABoard Forums
  • EE World Online
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • 5G Technology World
  • About Us
  • Contact Us
  • Advertise

Copyright © 2021 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Engineers Garage

  • Projects and Tutorials
    • Circuit Design
    • Electronic Projects
      • 8051
      • Arduino
      • ARM
      • AVR
      • PIC
      • Raspberry pi
      • STM32
    • Tutorials
    • Components
  • Articles
    • Tech Articles
    • Insight
    • Invention Stories
    • How to
    • What Is
  • News
    • EE Design News
    • DIY Reviews
    • Guest Post
    • Sponsored Content
  • Forums
    • EDABoard.com
    • Electro-Tech-Online
    • EG Forum Archive
  • Digi-Key Store
    • Cables, Wires
    • Connectors, Interconnect
    • Discrete
    • Electromechanical
    • Embedded Computers
    • Enclosures, Hardware, Office
    • Integrated Circuits (ICs)
    • Isolators
    • LED/Optoelectronics
    • Passive
    • Power, Circuit Protection
    • Programmers
    • RF, Wireless
    • Semiconductors
    • Sensors, Transducers
    • Test Products
    • Tools
  • EE Resources
    • DesignFast
    • LEAP Awards
    • Oscilloscope Product Finder
    • Video
    • White Papers
    • Webinars
  • EE Learning Center
  • Women in Engineering